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1. Summary

This is the Final Report for the 3-year grant entitled “Fundamental Investigation of
Biomineralization,” covering the period September 1, 1993 through August 31, 1996. The
project has augmented the mother project entitled "Design and Processing of Materials by
Biomimicking," monitored under the Grant # AFOSR-91-0281 covering the period June 1, 1991
through May 30, 1994. The report contains the accomplishments in various areas proposed for
the final period of the project.

The objectives of the research in this augmentation proposal were three-fold: (i) fundamental
understanding of the biomineralization process using 3-D organic network structure or a 2-D
substrate; (ii) augment the major AFOSR project on the materials processing by biomimicking;
and (iii) support a graduate student and an undergraduate student in training in this newly

emerging multidisciplinary field.

In area (i) the research activities focused on (a) understanding the formation of mollusk shell
structures, with emphasis on abalone shell; (b) biomineralization using the synthetic approaches
(solution chemistry); (c) biomineralization using the proteins extracted from the shell organic
material. In all these three areas, the investigation augmented the mother program, as area (ii).
In this respect, in a parallel study, understanding of the mechanical properties of the mollusk
shell structures have also been studied. In area (iii) the program supported on graduate student
(Ph.D.) and partially or fully supported three undergraduate students (senior students) in their

research as human-resources in this interdisciplinary field.

2.0 Background

Biomimetics is an area of research in which the analysis of structures and functions of natural
materials provide source of inspiration for design and processing concepts for novel synthetic
materials.1-> By biomimetics, structural control in synthetic materials may be established
through a continuos length scale, resulting in superior structures able to withstand the
requirements placed upon advanced materials.5-7 It is well recognized that biological systems
efficiently produce complex and hierarchical structures on the molecular, micrometer, and macro

scales with unique properties, and with greater structural control than is possible with synthetic




materials.!-12 The dynamism of these systems allows the collection and transport of constituents;
the nucleation, configuration, and growth of new structures by self-assembly; and the repair and
replacement of old and damaged components effectively. These materials include! all organic
components, such as spiders' webs!! and insect cuticles!2; inorganic-organic composites, such
as seashells!3-15 and bones;16 all ceramic composites, such as sea urchin teethl7 and spines;!8
and inorganic ultrafine magnetic!9 and semiconducting particles20 produced by bacteria and
algae, respectively. In addition, in certain cases, byproducts, such as enzymes, proteins, and
other macromolecules, have chemical or physical properties superior to their synthetic
counterparts.21

An approach based on biological systems is divided into two categories.22 First, by studying the
structures of biocrystals using various microscopy techniques at all scales of spatial resolution,
the fundamentals of their unique structural designs can be acquired and then mimicked by
techniques that are currently available to materials scientists, biomimicking. Second, by learning
the molecular synthesis and processing mechanisms of biomaterials and using these hitherto
unknown methodologies, new technological materials superior to those presently available can be
produced, bioduplication. The bioduplication is much more involved and requires a long-term
commitment to learn not only the intricacies of bioprocessing used by organisms but also to
develop new strategies to synthetically process materials at the molecular level with the same
size, shape, multifunctional and hierarchical complexity as the biomaterials. Biomimicking
approach can be relatively short term, although by no means simple, and involves exploring the
structures of biomaterials, which are often hierarchical with each level having a different
functionality, and correlating these functionalities with the unique microstructural design and

multifunctional properties of the biomaterials.

It is obvious that biomimetics is a wide area of research involving both the biological and
physical sciences. Any research effort in biomimetics, therefore, in either biomimicking or
bioduplication requires the collaboration of scientists from both of these fields. With this in
mind, we formed a collaborative multidisciplinary group involving members from Materials
Science and Engineering, Chemical Engineering, and Microbiology to start a major effort
through the mother AFOSR program, entitled: Design and Procéssing of Materials by
Biomimetics. This program was concluded in 1994. Before its conclusion, however, the
present augmentation project was started involving several UG and one graduate students who
performed research in this multidisciplinary environment at the cross-roads of biology and
materials sciences. The following sections summarize the research results, and the appendixes

provide copies of the manuscripts that have been published, or in preparation.




3.0 Major Research Accomplishments:

Our effort in the mother AFOSR project (that started in July of 1991) has focused both
biomimicking and bioduplication approaches in parallel. Our major aim has been three-folds: (i)
optimization of the conditions for the formation of biopolymers in an in-situ process with ceramic
particles (ceramic processing with the aid of biopolymers); (ii) mechanism of ultrafine (<100
nm) inorganic particles formation in biological systems (in the bacterial species Aquaspirrilum
magnetotacticum), and (iii) microstructure-property correlation in biocomposites (in a hard

tissue, nacre, which is laminated ceramic-macromolecular composite).

As part of the major effort of the AFOSR program, this augmentation portion of the project
focuses on item (iii), understanding of biomineralization processes, in addition to structure-
property correlation. In this portion, determining mechanical properties, such as fracture
toughness and strength, of biocomposites; developing understanding of the toughening and
strengthening mechanisms in these nanolaminated composite structures; and correlating these to
the micro- and nano-structural features have been areas of research in the AFOSR project (please
refer to the publication list). The nacre section of the abalone and pinctada shells have been the
specific hard-tissue used in this investigation. It is well-known now that nacre is a laminated
composite of CaCOs3, in the form of aragonite platelets (orthorhombic) surrounded by a 10-40
nm thick film of organic matrix. The hexagonal-shaped platelets are 0.25 to 0.5 pm thick having
a dimension of 5 - 10 pm edge size. The organic matrix is assumed to be a composite
nanolaminate of three layers; polysaccharides (i.e., chitin, in the middle) surrounded by -
pleated sheets of proteins and acidic proteins. The fundamental understanding of biocomposites
microstructures and their behavior under an applied load form the basis of mimicking these
composites. However, from engineering and technological points of view, the real progress in
biomimicking is largely dependent upon our ability to successfully produce these materials by
synthetic means. Model microstructures, which are those composed of component phases which
are not necessarily of immediate engineering importance but are easily processed and allow better
control of microstructures, can serve as "pathways" for biomimicking more sophisticated
microstructures with better properties. It is therefore, the purpose of the augmentation proposal
was to obtain a better insight into the details of biomineralization processes in order to eventually
mimick biocomposites and to achieve determination of the conditions and the structural

development that would lead to "true" biomimicking of the process.




Major research accomplishments in the AASERT include the following with short descriptions
(details of the results are in the copies of the manuscripts submitted or published as given in the

appendices).

3.1 Mechanism of Biomineralization in Red Abalone

An understanding of the biomineralization mechanism in nacre structure of mollusk shells that
involve macromolecular templating and assemblies: In the mother program of this research, the
first major finding was that the nacreous section of red abalone (Haliotis rufescens) has an
excellent combination of mechanical properties, i.e., fracture toughness and fracture strength,
better than high technology ceramic materials(Appendix VII).22 It was found out later on that
these properties originate from the microarchitectural structure of the nacre, which is composed
of aragonite platelets organized in a submicrometer-lamination separated to an organic matrix.
These classic results are now widely known and form the basis of many biomimetic studies
throughout this and other countries.23 Better insight into the detailed processes that operate
during the formation of the shell structure have formed the basis of the present augmentation
program. Based on our investigation using transmission electron microscopy (TEM), scanning
electron microscopy (SEM), and atomic force microscopy (AFM), it was revealed that the
aragonite platelets nucleate on the last layer of organic as separate islands which then grow
sideways, i.e., in the plane of the shell between the organic layers (i.e., transverse, fast, growth,
200 A / min.) and in the normal direction, normal to the plane of the shell (i.e., longitudinal,
slow direction; 20A / min.).

We believe now that the nucleation starts on a macromolecular structure, possibly proteinaceous,
in the middle of each of the aragonite platelet. This macromolecule, rather than being formed in
the last organic layer as a flat substance, is present throughout the thickness of the nacreous
section, extending down to the very first aragonite layer near the nacre/prismatic interface. As
such, the protein probably acts as an anchoring site onto which the aragonite nucleate at each

successive layer. We call this macromolecule the anchoring protein.

This finding radically changes the common belief that each layer of aragonite in the nacre
structure forms freely and orients itself epitaxially onto a proteinaceous organic interlayer
between the aragonite layers in the nacre, which acts as a template and directs the nucleation and
crystallographic orientation (see Addadi and Weiner et. al 1980’s, and Morse et. al, 1990s).




This finding also suggests that the organic layer in the nacre is dynamic, rather than it being
static, as was suggested in earlier studies. The organic layer probably contains polysaccharides
(that are the scaffolds), proteins (including transport proteins, that allow the nutrient and
inorganic ion transfer from the extrapallial fluid, and acidic proteins, that fill in the space in
between) in addition to the nucleator proteins, and lipids, that increase stability of the biological
layer. We now believe that the organic layer as such constitutes nothing other than a pseudo-
membrane, a dynamic structural entity that forms during the formation of the 2D structure of each
of the aragonite layers and the aragonite platelets within each layer, as well as the 3D structure of
the nacre, which all continue to grow simultaneously throughout the life of the organism.

Our most recent TEM results from the samples that were prepared in edge-on configuration of the
nacre/prismatic interface suggest that the above hypothesis is correct, that the first-formed
aragonite at the interface actually triggers the successive nucleation and eventual growth of the

platelets resulting in the formation of nacreous structure (see Appendix V).

3.2 Morphology and Crystallography of the Mollusk Shell Nacreous

Structures

We have investigated the ultrastructure in biological hard tissue, nacre, in terms of its
morphology, crystallography, and composition in three different species of mollusks:
cephalopods (Nautilus pompelius), bivalves (pearls oyster: Pinctada margaritafera) and in
gastropods (Haliotis rufescens) (Appendix-I). The objective was to bring about the similarities
among these widely different species that all practically have the same nacre in terms of their
microstructure, irrespective of the fact that, in addition to being taxonomically they being
different, the organisms have widely different habitats (depths of ocean they live in and hence the
water pressure) and different predators (hence the need to have different defense mechanisms).
In all cases, the aragonite appears in the TEM as being brick and mortar microarchitectured
laminated structure. In all cases, again, the bricks are about 0.25 to 0.5 pum thick, multiedged (3,
4, 5, or 6-sided), side length being 2 to 5 um. These were compared with geological aragonite

formation.

We found that the aragonite platelets in a given layer are all oriented with their c axis (i.e., [001]
axis of the orthorhombic lattice) perpendicular to the layer (shell) plane. Furthermore, all of the
successive layers are in the same orientation. This is consistent with the finding above that each

aragonite platelet is “anchored to a macromolecule that runs through the middle of the platelet,




and hence this anchoring proteins affects the nucleation of each the same way by orienting them

in the same direction.

Rather than being oriented in any other crystallographic direction, the finding that [001] direction
being common to each aragonite platelets is significant. Geological aragonite also nucleate at the
center and grow spirally similar to the growth assisted by a screw dislocation, as commonly seen
in the growth of the single crystal in many mineral systems. The growth is fast in the c-
direction, and slow in the directions on the a-b plane, resulting in an aspect ratio (1/l,.,) of
~100/1. During the growth, however, twins form to conform each platelet into 4-edged or 6-
edged crystals, with twin plane being {110} parallel to [001] direction. Similar growth also
takes place in biogenic aragonite, but in this case the growth in the c-direction is limited by the
presence of the organic layer; this results in fractional aspect ratio; i.e., 1/l ~ 0.1! As, it will be
discussed in a later section, this results in the desirable layered architecture of the nacre structure
constituting the inner section of the mollusk shell. this gives a tough section of the two-ply
structure providing the energy absorption that is essential in any armor system (See Appendix-
II).

One aspect of biogenic aragonitic structures being different than geological aragonite was thought
to possibly be due to the elemental compositional differences in the former phase(s). We have
performed both electron energy loss spectroscopy (EELS) in the TEM, energy dispersive x-ray
spectroscopy (EDXS) in the SEM, and wavelength dispersive X-ray spectroscopy (WDS) in the
microprobe. In particular, aragonite forming and stabilizing elements such as Mg, Sr, and K,
were sought for. The results indicated no detectable levels of these elements throughout the
nacreous structure in none of the mollusk species examined. This lead us to conclude that the
mineralogy (i.e., aragonite versus calcite), the crystallography, morphology, and shape of the
aragonite as well as the calcite particles that make up the mollusk shell structures come about by
the control of the organism, perhaps using macromolecules, such as proteins and enzymes,

during the nucleation and subsequent growth of the hard tissue.

3.3 Comparison of Nacreous Structures to Geological Aragonite

Morphological features within the structure, such as antiphase boundaries, twin boundary
structures, dislocations, domain boundaries (including low angle-tilt boundaries), and their
presence (and absence) in geological and biogenic aragonite are further discussed in detail in the
copies of the publications given at the last section of this report (Appendix-I). One of the most




significant finding is the large difference in the aspect ratios in two systems as indicated above.
The similarity, surprisingly, is in the hierarchical twin structure within the aragonite. While
twins form between the platelets, among the domains within a given platelet, and the nanotwins
within a given domain in an aragonite platelet in nacre, a similar twin relation is present between
the columnar grains of the geological aragonite. Again, each columnar grain is divided into
twinned domains, and which in turn also have nanoscale stress-accommodating twins, all having

{110} as the twin plane, similar to those of the aragonite in nacre.

The differences were also found in other structural features such as the water-filled spherical
pores present in the biogenic aragonite, while no such feature present within the geological
aragonite. The function of these structural features has not been firmly established yet.
However, we think that it may be possible during the growth of the shell, the water present
between the pseudo-membrane (carrying the organic macromolecules that make up the organic
layers and the inorganic ions) is trapped by the grown aragonite platelet at later stages of the
growth process. The presence of these water-pockets might be significant in terms of providing
means to soften the otherwise “brittle” aragonitic ceramic material, by a process similar to
brecipitation softening system(e.g., in Al,O; (sapphire, hard) -TiO, (soft) in which precipitates
of a second phase with a low elastic modulus within a matrix of high elastic modulus are
distributed homogeneously resulting in a two-phase structure with substantially increased
toughness. This is certainly important from the fact that nacre provides the soft (tough)
component of the mollusk which is an armor while calcite in the outer prismatic section of the
shell provides the hard component (in which no water pockets have been found to be present)
(Appendix-I).

3.4 Calcite in the Prismatic Region versus the Single Crystal Geological
Calcite

In addition to the inner nacreous section, the outer prismatic section of mollusk shells have been
examined, especially with emphasis in the red abalone (Appendix-I). The most prominent
structural feature is the fact that all calcite crystals are grown in a columnar fashion with their
long axes normal to the shell-surface plane. Frequently, the calcite crystals confirm into a
common crystallographic orientation, extending up to 10 or more grains. These crystals do not
have the monoclinic shape that the single crystalline geological calcites have. As known, calcite
can have over 600 different morphological forms, that are influenced by the conditions that
include the temperature and pressure of formation, the presence of growth modifiers (or habit




modifiers, i.e., secondary elements within calcite), and the other solution conditions (acid and
salt concentrations and the pH value). However, the calcite in the mollusk shells form at ambient
temperature and pressure. The exterior oceanic water is basic with pH value about 7.5. Both the
salt concentration and the pH value are most likely controlled by the organism within the confines
of the shell (extrapallial fluid) (local concentrations have not yet been determined near the growth
edge of the mollusk). Our spectroscopic and elemental compositional analysis show no

additional element other than the major components of the calcite (and aragonite), Ca, O, and C.

3.5 Mollusk Shell as an “Ideal Armor”: Structural Design as a Material

System

The two-ply structure of the shell, calcite as the exterior section, and nacre as the interior
section, in the abalone and other mollusk have evolved in order to provide protection of the
organism against external predators. The unique morphologies of each of the sections of the
mollusk shell described above and their crystallography, growth behavior, and
strength/toughness properties have been optimized to make this biological composite to be used
as a device by the organisms, i.e., cephalopods, gastropods, and bivalves (Appendix-II). For
example, both the exterior prismatic section and the interior nacreous section are biological
composites composed of both the organic and inorganic phases, with organic phase constituting
only 2% of it by volume. One would then expect both of these sections to have similar
properties. Neither of these sections is monolithic; in fact both are made up of small inorganic
particles (calcite and aragonite, respectively) embedded within an organic matrix, albeit very
small volume. It is the morphology of the individual filler, i.e., aragonite in the nacre and calcite
particles in the prismatic sections that are different. As we discussed, aragonite crystallites are in
the form of pseudohexagonal platelets, stacked parallel to the shell plane in submicron layers,
rather than hexagonal columns, the morphology they usually grow to form. On the other hand, it
is the calcite crystallites that are in the form of columnar grains, all arranged perpendicular to the
shell surface. These morphologies are unusual among all the known (600 or so) morphologies
of these two mineralogy types of calcium carbonate. Therefore, the questions are how such

mineralogical forms develop in the mollusk shells and what purpose do they serve?

The major purpose of the shell as a device in mollusks is to shield the soft body of the organism
against the predators. Therefore, the shell acts as the armor. The traditional armors have hard
surfaces to stop the projectile, and soft interior section to absorb the energy of impact.
Therefore, the surfaces are usually hard ceramics (such as B4C or AlpO3, but usually in the form




of single block of material) (Appendix-II). In the interior, there is either a metal (e.g., Ti or alloy
system) or a ceramic-metal composite. Neither of the sections however is highly structured,
i.e., the grain orientation, size of individual grains, morphology, and thickness are not tailored.
As we have seen above, the calcite on the exterior section is columnar and aragonite is hexagonal
platelike crystals forming laminated structure. Both sections basically are ceramic-polymer
composites (cerpoly), but with the polymer (organic) portion constituting a very small volume
(2%). Presumably, outside portion is hard, and as we have seen in the first section, the nacre

(inside) portion is tough (twice tougher compared to advanced ceramic materials, e.g., Si3Ny).

The organization, however is odd in the sense that geological aragonite is harder than geological
calcite! Hence one would expect aragonite to form on the exterior section and calcite on the
interior. To solve this dilemma, we performed microhardness measurements from isolated
sections of the red abalone, anticipating that the microscopic hardness would not be the same as
the macroscopic hardness. In fact, the measurements made using a diamond-tip microhardness
machine revealed that the microhardness as well as the elastic modulus of the prismatic exterior
section displayed 30% more values than that of the interior nacreous section (Appendix-II). This
reveals a drastic change of hardness properties between geological and biogenic materials. In the
geological single crystals, the microhardness of calcite is 150 MPa and that of aragonite is 470
kg/mm?, compared to the values of 210 versus 175 kg/mm?, in biogenic calcite and aragonite
respectively, a reversal or properties! These results clarify the affect of the organism in
controlling the formation of different minerals of calcium carbonate, including their orientation,
morphology, and size. It appears, therefore, that through these manipulation of the
microstructural parameters, the organism designs and constructs the structure to make it a useful
device (a device, i.e., an ideal armor, so successful that it has been used by many mollusks

species for 500 millions of years).

3.6 Synthetic Biomineralization Studies: Biomineralization with and
without Extracted Mollusk Proteins

The overall objective of the research in all these areas is to learn lessons from biological systems
to develop new strategies in the design and processing of novel synthetic materials. In addition
to ultimate design and processing objective of specifically manufacturing submicron-laminated
ceramic-polymer (or ceramic-metal) composite materials for high-toughness/high-strength
combination of applications, the desire in the current and future research has been also to produce

particles with controlled size, mineralogy, and morphology. We still do not know what the




conditions are under which calcite or aragonite crystallites form. We know, however, how they
grow to make the overall 3D-microstructure. Unusual structural parameters encountered in these
calcium carbonate structures in sea-shells suggest that the organism must have influence over
them. For example, the morphology may come as a result of the influence of the macromolecular
habit (growth) modifiers. Similarly, the mineral types may be related to the nature of the
nucleating proteins. 3D organization of the inorganic particulates may be controlled by the 2D or
3D macromolecular scaffolding (including polysaccharides in addition to proteins).

To test these hypotheses, we have prepared CaCO3 in various different mineralogical forms in
aqueous solutions at ambient conditions. For these tests, biomineralization studies, control
samples were compared with those conditions but with the addition of either foreign inorganic
ions and/or with the addition of acid-soluble proteins that were extracted from the shell sections

in a parallel investigation (Appendix-II).

The experiment performed by using impurity inorganic ions included Mg, K, and Ba in various
proportions, in addition to Ca™ in the presence of CO, in solution, and the particles formed were
sampled at different time intervals to study their structure and composition by XRD and TEM
techniques. In the second set of mineralization experiments, mineralization was performed in the
presence of organic extract of the shell nacre structure, which were mostly soluble proteins.
Two of these proteins, one at 12,000 and the other at 14,000 were highly purified. The first set
of experiments performed in the presence of foreign inorganic ions did not produce any
significant change in the morphology of the calcium carbonate crystals formed, although they
influenced the type of mineralogy (see Appendix-I). In the presence of proteins, however, two
distinct structures formed, both producing aragonite form of CaCO;. When a minute amount of
Mg was added, the particles formed were in the shape of hexagonal platelets, a unique result
which has never been achieved before (a manuscript is in preparation to report this result).
Submicron-level thin (about 0.5 um) and platelet-like (hexagonal) particles, are desirable for
many applications, such as fillers in paints, paper and polymer composites. In these industrial
applications, the major ceramic particles used are either titania (which is expensive), kaolinite (an
alumina-silicate mineral) (which is highly brittle), and other ceramics. (Pfizer uses 1 M tons of
CaCO; just as fillers in paper, with a desire t produce hexagonal CaCO3 platelets).24

In the second set of experiments, when the protein was added in the absence of Mg, but under
various pH values, then particles formed were tens or hundreds of micrometer sizes and in the
form of spheres or semi-spheres (Appendix-VI). The cross-sectional structures of these particles
revealed that they are actually composed of laminated layers, with the inorganic particles being



aragonite. Although the individual particles were not of platelike (they were extremely small,
needle-like particles), they were configured in the form of layers, and gave the particles a pearly-
appearance. We called this research, formation of synthetic pearls. We have also determined
physical property of these particles by using microhardness measurements; as expected from the
orientation of the aragonite crystallites and the laminated nature of the particle, the hardness
values were as high as those of the nacre. These particles may be called biomimetic ball

bearings.

4.0 Students involved in Research

4.1 The Undergraduate Students: Although we have originally requested funds
for the support of one UG student, there were three students who worked on various aspects of
this research during the course of the grant (sometimes as hourly paid students, and sometimes

as junior and senior research students). These are:

i. Mary Katchur (completed Summer 1996) (now works at Intel, Oregon),

ii. Demetriah Webster (completed in Spring 1966) (now works in a private Company),

iii. Gretchen Wahl (completed in Spring 1994): This is another UG student, who has
completed her research at the beginning of this AASERT Program and changed her
department and is now a graduate student (Ph.D.) in Bioengineering with an NSF
Fellowship.

(See Appendices III and IV for the their research reports)
4.2 Graduate Student: Daniel Weber Frech (expected to finish Summer 1997).

Appendices I and V give a report and a paper-in-preparation of Frech's research
results (several additional papers are also in-preparation from Frech's results).




.0 Conference, Workshop, and Symposia Presentations and
Summer Schools Attended by the Students:

. Nanodesigning in Biological Composites, M. Sarikaya, D. W. Frech, C. Furlong, and J. T.
Staley, in: Nanofabrication and Biosystems: Frontiers and Challenges, Keauhou Beach
Hotel, Kona, Hawaii, May 8-12, 1994.

. Formation, Crystallography, and Morphology of Biogenic and geological Aragonite, Daniel
Frech and Mehmet Sarikaya, Symp. S, Biomolecular and Biomimetic Materials, Fall Meeting
of Materials Research Society, Boston, November 28-December 2, 1994.

. Biomineralization from Biology to Technology, M. Sarikaya, Symp. S, Biomolecular and
Biomimetic Materials, Fall Meeting of Materials Research Society, Boston, November 28-
December 1994. ,

. The Growth Control in CaCO3 Biomineralization, Daniel Frech, Mary Katchur, Richard
Humbert, Mehmet Sarikaya, Symp. U, Materials Inspired by Biology, Fall Meeting of
Materials Research Society, Boston, November 27-December 1, 1995.

. Strategies of Biomineralization in Synthetic and Biological Systems, M. Sarikaya, Symp. U,
Materials Inspired by Biology, Fall Meeting of Materials Research Society, Boston,
November 27-December 1, 1995.

. Design of Ceramic Microstructures by Biomimetics, M. Sarikaya, in: Symposium on
Biological and Biotechnological Materials, Annual Meeting of American Ceramic Society,
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Preface: Purpose of the Research

The experimental work involved in this PhD project is designed to develop an understanding of
how, in molluscan nacre, the formation and growth of CaCO; particles and the material system known as
nacre is controlled by marine organisms using biomineralization. In this study, the approach applied to
obtaining such an understanding has two phases. First, samples of natural biogenic shell material will be
examined thoroughly using techniques of electron microscopy. The key microstructural features of this
material system will be thereby established, and constituents critical to the process of biomineralization
in nacre will be determined. Then, by synthetic means which simulate different aspects of growth
conditions found in the environment of growing motusc shell, we will investigate the mechanisms of
growth of CaCOj; solids from aqueous solutions. In this portion of experimental work, we will try to
answer specific questions about the regutatory effect of organic molecules and inorganic ions over the
growth of precipitate of CaCOs, as seen in biomineralization. More complete description of the

investigation is provided in the Experimental Approach section.

L. Introduction
1.1 Justification: Study of Biomineralized Tissues

Hard tissues consisting of organic and inorganic phases are seen widely in the structural
framework of natural living organisms. Certain microstructural characteristics which these materials
display currently can not be produced by synthetic techniques. Composite structure at ultrafine length
scales (a few nm) contributes to extraordinary mechanical, optical, and magnetic properties shown by
these materials. In the area of metallic alloys, an analogy to the role and significance of microstructural
inhomogeneities can be found in the use of small inclusions (precipitates) produced through controlled
tempering of metallic alloys, and the advantages these precipitates offer to the metai in terms of greater
toughness and strength. Other examples include artificially layered nanocomposites, alloys for
anomalous increases in mechanical properties, and heterostructural semiconductors for electronic and

optical properties.




The manipulation of crystal texture by organisms bearing biomineralized tissues provides
another incentive for detailed study of such materials. Crystal textures in some tissues seem highly
adapted to function. Better understanding of this apparently widespread biological phenomenon could
result in new insights for the improvement of microstructure-controlled materials produced by synthetic
processes.

Understanding of biological solid-state interactions between constituent phases (organic matrix
and inorganic crystal) of biomineralized materials would be of substantial value in structural biology and
medicine. It would, for example, possibly give insight into pathological mineralization in bones and
teeth, and formation of kidney stones. In crystal growth and colloidal science, principles gained from the
study of biomineralized tissues could be applied in prevention of industrial scaling and the controlled
synthesis of ultrafine-structured electronic, magnetic, and catalytic devices.

The great variety of highly specialized shapes and forms displayed by biomineralized tissues
inspire materials scientists as well, who would like to mimic biomineralization in the laboratory in order
to produce structured ceramics. or single crystals of controlled shapes, for use in, for example, electronic
devices and as magnetic storage medium.

Finally, study of biomaterials holds the possibility of uncovering a new method for the
production of particles (submicron sized) of very regular, controlled morphology, by the regulatory
mechanism/interaction of active organic molecules with growing inorganic crystalline material. High-
purity. uniform powders (often equiaxed) are required raw materials for the production of high-quality
.ceramic materials (narrow and specific size distribution is needed, as well, to prepare proper colloidal or
dry powders for use as constituents of structural ceramics, for reinforcements in paints, paper, and
plastics). Many methods are available to produce controlled powders at high temperatures. But, high
temperatures in processing can be equated to less controlled microstructures, due to high reactivities, and
to high costs, due to expenses of required equipment and energy to conduct such processing. Research is
underway to find synthesis techniques to produce high-purity, uniform powders at low temperatures. One
area of study which has inspired this search is biological tissues exhibiting fine control of particle

morphology, crystallography, and architectural buildup, such as is seen in mollusc shell structures.




1.2 Background on Biomimetics

1.2.1 Types of Organic/Inorganic Materials Systems

The biological composite materials systems which have recently aroused the interest of materials
scientists, and which comprise the focus of this research, contain phases consisting of crystalline ceramic
and biological macromolecular components. These biomineralized materials systems function as
structural components for the living organism they are part of, often either forming a load-bearing
member of the skeleton or a protective (e.g., shell) covering for the organism. Natural examples of these
types of materials include (1) bone, in vertebrate organisms, (2) mammalian teeth, and (3) nacre in shells

of molluscan organisms.

There are other systems composed of two-phase microstn;cture that can be termed biological
organic/inorganic composite systems, such as insect cuticles and skeletal units of some echinoderm
species, but a brief overview of each of these three examples will provide adequate illustration of the
organization, structure, and properties of biological composites. A description of the compositions,

microarchitecture, and properties of these three systems follows.

Bone consists of a mineral phase, which is mainly hydroxyapatite (Ca;o(PO,)s(OH),) and some
amorphous calcium phosphate. The second component of bone is the protein collagen, which occupies
approximately an equal volume as the mineral phase in bone. By weight, the mineral accounts for about
60% of the weight of bone: the mineral, 28%'. The remainder of the mass of bone is water. The
structure of bone has been quite difficult to analyze because there are many hierarchical levels of

organization present. Some details of the conformation (molecular structure) of the organic components

' D. Currey, “Biological Composites,” Handbook of Composites, 4, Chap. 9, 120-196.




have been determined, as well as information about the distribution and organization of the mineral phase

in the collageneous matrix. Significant factors concerning the structure of bone include:

(i) The organic molecular constituents are mainly collagen; the primary sequence of the protein is:
glycine-proline-hydroxyproline-glvcine-proline-X-glycine,
where X can be any of a variety of amino acids. Conformation of the collagen molecules can be related

to weak bonds between the amino acid groups?

(ii) The collagen molecules adopt a triple-helical conformation of already helically arranged
polypeptides. This conformation can be described as a coiled coil, and is called a tropocollagen
molecule. Such tropocollagen molecules are arranged into fibrils, which are thought to be aligned in a
head-to-tail fashion. Between the head and tail of adjacent fibrils are gaps, equal in length to the distance
between homologous points on molecules that are adjacent in side-by-side fashion. The tropocollagen
molecules have length of approx. 260 nm., with a 64 nm. head-to-toe gap between them’. From this
description of structural organization of the protein phase, one can recognize that the structure is

hierarchically organized.

(iii) The mineral phase interpenetrates the network of collagen molecules. It is thought that the mineral
is deposited first in the gap between head and tail of collagen molecules, and later impregnates thc spaccs
between fibrils. At present. there is limited information on the cause of nucleation, control of growth,

and crystallography of the final composite, and on the relation between the organic and inorganic

components of bone.

The illustration given on the following page shows the hierarchical nature of the structure of

collagen as found in bone.

2 | Woodhead-Galloway, Collagen: The Anatomy of a Protein, (London: Edward Arnold, 1980).
3 C. Berthet-Colomias, A. Miller, and S.W. White, J. Mol. Biol., 134, 431-445 (1979).
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Schematic illustration of a collagen polypeptide chain with the (Gly-X-Y),
repcats (top) and the three polypeptide chains folded into the triple helical structure
{bottom).
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Figure 1: Schematic [llustration. Collagen Molecular Structure in Bone. Top Figure® depicts repeating
(Gly-X-Y) Amino Acid Sequence, and the twisting of three such polypeptide chains, to form a “tropocollagen”
molecule. Bottom ﬁgure5 shows how collagen fibers are comprised of tropocollagen molecules aligned in a
side-by-side, staggered fashion. Actual physical evidence for this model is seen in periodic pattern found in

electron micrographs of collagen fibers, to right.

Mammalian Teeth

Mammalian teeth exhibit highly optimized structure and mechanical properties which render
them capable of bearing heavy compressive loads during mastication of food. Teeth consist of two
distinct regions, dentin, the underlying body of the tooth, and enamel, its hard covering. Dentin at the

molecular level appears to be similar to bone. Collagen “Type I” framework molecules are first secreted

*H.A. Lowenstam and S. Weiner, On Biomineralization, (New York: Oxford University Press, 1989),
153 (for top illustration).

3 C.K. Matthews and K.E. Van Holde, Biochemistry, (Redwood City, CA: Benjamin/Cummings
Publishing Company, 1990), p. 183.




in the growth of teeth (dentin portion); these molecules self-assemble into an organic matrix framework
in which mineral growth proceeds’®. It is conjectured that the organic matrix is semipermeable; ions are
thought to diffuse through the framework to mineralization sites.

Enamel, capping the dentin portion of teeth, consists of elongated crystals of dahilite (Cas(PO,,
C0,)5(OH)), also known as carbonate-apatite. which show an exceptional ultrastructure suggestive of a
high degree of control in the process of biomineralization responsible for their formation. At the
microscopic level, the crystals are arrranged in parallel arrays, which are in turn arranged in stacked

sheets, which are oriented at 60-70° with respect to one another’. A microphotograph of this structure® is

shown below.

Figure 2: SEM Photograph, Microarchitecture of Enamel in Teeth. Stacked sheets of Parallel Dahllite
Crystals are evident.

Collagen fibrils are present among these dahllite crystals in some enamel. Remarkable in this sysiem are
the shapes of the dahllite crystals. Synthetic dahllite (grown at room temperature and 1 atm. pressure)
never shows crystals with such an extreme aspect ratio - the biogenic crystals may reach tens of microns
in length and are 0.05 to 0.10 micron thick - like spaghetti. Precise mechanisms of the growth processes

are not known. neither is known the structural correlation between particles and collagen components of

the composite.

¢ Collagen “Type I framework molecules. dentin, teeth, etc. (Simkiss and Wilbur, Biomineralization?).
7 A. Jodaikin, S. Weiner, and W. Traub, “Enamel Rod Relations in the Developing Rat Incisor,” Journal
of Ultrastructure Research, 89, 324-332..

® H.A. Lowenstam and S. Weiner, On Biomineralization, (New York: Oxford University Press, 1989),

177.




Mollusc Shell Nacre

Nacre is a pearlescent, smooth lining found at the innermost layer of a number of shells of
marine organisms. This material, under mechanical testing, has demonstrated exceptional fracture
toughness and strength, surpassing the comparable mechanical properties of synthetic CaCO; by 30
times’. The microstructure of nacre is unique and represents a microcomposite, layered material of
alternating hard and soft phases. The hard phase is CaCOs, one polymorphic form aragonite, in single-
crystalline, polvgonal platelets of approximately 0.5 pm thickness and 5-10 um in edge length; the
ductile phase, termed the “organic matrix,” is comprised of several layers; its precise composition and
organization has not been fully determined but includes proteins and polysaccharides. The schematic

diagram below provides an illustration to clarify this description of the nacreous microarchitecture.

Organic Matrix

i 11 i
| i 1 i
C— 1 1[ | ‘
[ ]! 11— 1 -¢——— Aragonite Platelets
[ Il [ ]
| i | | 1L ]

Figure 3: Schematic Illustration of Microarchitecture of Nacre

® M. Sarikaya, J.Liu, and [.A. Aksay, “Nacre: Properties, Crystallography, Morphology, and Formation,”
Unpublished research.




This material system offers for study a structural organization that is both hierarchical and
comparatively simple. making it highly suitable for study to investigate principles of biomineralization,
and a model system whose structure it may be possible to mimick by synthetic means. The crystalline
phase of nacre, especially, can be studied in depth thfough application of TEM. The nacre structure also
represents a unique product of natural processing. With current technology for the production of
synthetic hard/soft phase composite systems, such as cermets, it is not possible to achieve laminated
structures at the submicron dimensional level as exhibited by nacre. The ultrafine scale layering of the
two-phase nacreous composite system. in conjunction with the mechanical characteristics of the
constituent phases and strong interfacial bonding, are believed to confer upon nacre its exceptional
mechanical properties. These features and the desire to synthetically produce high-performance ceramics
for structural and high-stress application provide impetus for detailed study of nacre, aimed at developing

understanding of the biogenic processes (biomineralization) involved in the formation of this material.
1.3 Principles of Biomineralization

From the preceding examples of biogenic organic/inorganic materials systems, some of the
exemiplary characteristics and features of biomineralized systems should be apparent. The key attributes

of these types of systems include:

(i) Intimate mixing of inorganic. crystalline-phase material with organic macromolecular components.
The relative proportions of inorganic and organic matter in a biomineralized material system can vary

widely; usually the majority of the material is of the inorganic (crystalline) phase.

(ii) Highly specific shape (morphology) for components of the mineral phase. The inorganic crystalline
components are typically sub-micron to several hundred microns in dimension; they show crystal habit

which is regular but which differs strongly from habit of crystals of the same type formed by nonbiogenic




processes. In all cases (although this has not been investigated for all biomineralized tissues), there exists

some ordering of the crystallographic disposition of platelets or particles in the mineral phase.

(iii) Functional organization of the organic phase. For example, in nacre the “organic matrix” forms thin
sheets which are suspected to function as a compartmentalized framework on which, or within which,
mineralization can take place. In bone, the fibrils of tropocollagen bundles are organized in a way that
offers sites for mineralization to occur, i.e., in the gaps getween the ends of the matrix molecules.
Calcium binding by active groups within organic matrix constituents has been hypothesized by several
scientists seeking to explain the chemical processes involved in control of mineral nucleation and growth
by components of the organic matrix'’; analysis of its macromolecular constituents (i.e., amino acid
compositional determination for’proteins) has indicated the possibility that negatively charged sidegroups

actively participate in biomineralization by binding calcium ions from solution.

(iv) Hierarchy in microarchitecture of biomineralized tissues.

Theories on Mechanisms of Biomineralization

From the traits of organic/inorganic composite biomineralized tissues, one can see that the
structure and organization of these materials is highly specialized, regular, and specific. The state of
knowledge of the chemical processes occurring in vivo that produce such materials is, at this time,
incomplete. From compositional and structural analysis of these materials, however, a scientific
concensus has been reached regarding the formation of specialized crystalline particles in the presence of

an organic matrix. It is generally agreed that the nucleation and growth of the mineral phase is regulated

1A P. Wheeler. J.W. George, and C.A. Evans. “Control of Calcium Carbonate Nucleation and Crystal
Growth by Soluble Matrix of Oyster Shell,” Science, 212, 1397-1398, (1981); Stephen Weiner, “ Aspartic
Acid-Rich Proteins: Major Components of the Soluble Organic Matrix of Mollusk Shells,” Science, 190,
987-988; A.P. Wheeler. K.W. Rusenko, J.W. George, and C.S. Sikes, “Evaluation of Calcium Binding
by Molluscan Shell Organic Matrix and its Relevance to Biomineralization,” Comp. Biochem. Physiol.,
87B, [4], 953-960 (1987); and M.A. Crenshaw, Skeletal Growth of Aquatic Organisms, (eds. D.C.
Rhoads and R.A. Lutz), (NY and London: Plenum Press, 1980), 115-132.




by the organic matrix. Furthermore, some specific fundamental mechanisms of chemical interaction,
which are responsible for the regulatory effect of organic molecules on biomineralized mineral growth
(alternatively referred to as growth of biogenic crystalline material), have been proposed and partially
substantiated. Several of the prominent views on the fundamental processes involved in mineral growth

regulated by organic components will be briefly summarized below:

(i) Epitaxial role of the organic matrix

From electron diffraction patterns of organic matrices and mineral crystals in mollusc shells,
alignment between structural components of the organic matrix (chitin fibrils and protein polypeptide
chains) and crystallographic a and b axes in aragonite, which is adjacent to these proteins, has been
detected. This suggests that the mineral has formed epitaxially on the matrix surface. The site of the
nucleation of the mineral phase is postulated to be a well-oriented set of acidic macromolecules which

. .11
form a surface layer on the structural core of the organic matrix "~

(ii) Ionotropic role.

The sulfated fraction of the organic matrix from mollus;:an shell nacre appears to be involved in
crystal nucleation. Pores in the organic matrix, thought to be nucleation sites, show high concentration of
sulfur and muccopolysaccharides, which bind calcium. This calcium binding induces local anion
binding, which then induces secondary calcium binding. The resuitant local high concentration of ions is

thought to bring about nucleation'”.

(iii) Organic macromolecules function as crystal poisons.

In the previous two views, the organic macromolecules found in biomineralized tissues are

thought to function in a manner that would reduce the activation energy of formation of new mineral

'S Weiner, Y. Talmon, and W. Traub, “Electron Diffraction of Mollusc Shell Organic Matrices and
their Relationships to the Mineral Phase,” Int. J. Biol. Macromol., S, 325-328 (1983).

2 E D. Greenfield, D.C. Wilson, and M.A. Crenshaw, “Ionotropic Nucleation of Calcium Carbonate by
Molluscan Matrix,” dmer. Zool., 24, 717-729 (1984).
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from ions in solution. A contrasting point of view posits that the organic matrix may effectively inhibit
the growth of certain facets of the mineral phase. Proteins are thought to adsorb to specific faces ofa
growing mineral, forming a barrier layer which limits diffusion of ionic species from solution to these
faces and thereby limits their growth. Specificity of regulation, leading to unique and unusual
morphological features shown by biogenic mineral particles, can be attributed in this scheme to
attachment of proteins and other functional macromolecules to faces with appropriate surface
arrangement of atoms, or, in other words, to specific planar faces on minerals. Wheeler, Sikes, and
George'” found that a calcium-binding, soluble protein extracted from oyster shell suppresses nucleation
of CaCO; and decreases the rate of crystal growth in vitro. Hence, it is thought that the soluble matrix of

‘.

mollusc shells may acually inhibit mineral growth.

It may be that the organic matrix framework found in biomineralized tissues actually functions
as both an initiator of crystal nucleation and later as an inhibitor of crystal growth. The view that the
organic matrix has such a bifunctional role has been proposed by researchers in this field, as well.
Through examination of features of biomineralized systems, analysis of the components present in these
systems, and evaluation of the distribution of organic and inorganic phases found in biomineralized
tissue, scientists have concluded that there exist specific modes of chemical (steric, geometric,
stereochemical, and electrostatic) interaction between the organic and mineral phases which result in
regulation and control of mineral growth from aqueous solution. As mentioned previcusly, at this time
full understanding of the fundamental mechanisms involved in this controlled mineral growth has not

been developed.

13 A.P. Wheeler, J.W. George, and C.A. Evans, “Control of Calcium Carbonate Nucleation and Crystal
Growth by Soluble Matrix of Oyster Shell,” Science, 212, 1397-1398 (1981).
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1.4 Purpose of the Research, Objectives, and Task Areas

Purmpose of the Research

The most significant overall goal of this research project is to elucidate the effects that
organisms have on the formation, organization, microstructure, and properties of inorganic crystalline

material. In this study, the system examined (in an attempt to uncover these effects) is nacre found in

mollusc shells.

Objectives

The objectives involved in exploring the question of how the organism influences this biogenic
material system are threefold. The first objective is to complete an in-depth analysis of microstructure
and crystallography of nacre and primarily its inorganic constituent (aragonite); this analysis will be
conducted using the techniques of transmission electron microscopy to explore this material at the finest
scale possible. As part of this analysis. the microstructure of biogenic aragonite will be compared to that
of aragonite of geologic origin, to determine how the biogenic growth process may influence fine
structural features of the inorganic phase of nacre. The second objective is to develop insight int
formation mechanisms for aragonite in nacre; the growth of the mineral phase in nacre is thought to be
regulated by organic macromolecules present at the site of its nucleation and growth. Through study of
crystallographic relationships. ordering, and microstructural features within the microarchitecture of
nacre we will attempt to develop an explanation of crystal formation mechanisms in nacreous aragonite.
The third objective is to investigate the influence of organic material on growing aragonitic particles
through experimental biomimicking, where organic molecules are deployed in an aqueous solution from

which aragonitic particles are caused to precipitate.
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Specific Experiments and Tasks in this Research

Specific task areas which I will undertake in accomplishing these three objectives include the

following experimental activities:

1) Characterization of microarchitecture of nacre through use of transmission electron

microscopy. More specific goals in the microscopic analysis of nacre are:

a) To develop full, detailed knowledge of the microarchitecture, distribution, and dimension of
the crystalline and organic phases found in the structure of nacre. From previous studies, it is

~ known that molluscan nacre consists of platelets of aragonite less than 1.0 um thick and several
microns across, which are stacked, having an intermediate layer of “organic matrix” between
their flat faces and edges (this structure has been described earlier). Additional details will be
explored through TEM examination. including:
eAverage shape (number of sides) of each platelet, and thickness
sEvidence of sites of nucleation for individual platelets
eVariation in nacre from different species of moiluscan organism. Shells from different species
will contain a different mixture of organ_{c macromolecules. From microscopic examination of

nacre from the respective shells, we will be able to determine if the difference in organic content

has distinct effect on the microarchitecture of nacre.

b) To determine or investigate the possible existence of crystallographic relationships between

the neighboring aragonite platelets (ordering, preferred alignment, etc.). This order may be

correlated with the functional organization of the organic matrix.

13




¢) To investigate or recognize features in biogenic aragonite which were not foreseen by teh

researchers prior to making the TEM study, and which may contribute to the superior ®

mechanical properties of nacre.

2) Comparison of the inorganic phase (aragonite) from nacre with aragonite of geologic origin. ®

Comparison will be made between:

a) Macroscopic morphology of aragonite crystals of biogenic and geologic origin. PY
b) Defects and ultrafine-scale features of aragonite platelets in nacre. These features will be

compared to the crystalline substructure found in geologic aragonite. The principal means to

perform such a characterization of defect structures from the two respective materials is TEM. ®
Examples of defects, and their abundances, which will be surveyed, include domains within

individual platelets (twinned regions, for example), dislocations, pores, and stacking faults.

¢) Comparative compositional analysis of biogenic and geologic aragonite, through use of ®
energy-dispersive X-Ray analysis and through electron energy loss spectroscopy. In this phase

of research, it may be possible to determine if occluded proteins are present in the structure of .

biogenic aragonite. ®
3) Attempt to grow contrglled~shape precipitates of CaCO, from aqueous solutions. Here, an

effort will be made to understand the relationship between composition of an ionic solution and

the characteristics of precipitate one can produce from this solution. Specific goals in the ®
investigation of crystal growth from solutions include:

a) Determination of the composition range (for a solution which is supersaturated in Ca’* and

CO,%) that will yield particles of aragonite, rather than of calcite. ®
b) Developing a knowledge of the effect of individual inorganic ionic constituents of seawater

on characteristics of precipitates deposited from solution containing these ions. For example, we

would characterize the morphology of precipitate which formed from a solution containing Ca™, ®

CO,”, and one other primary ionic constituent of seawater, such as Sr** . Distinct morphological
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features found in precipitate generated under such solution conditions could then be ascribed to
the influence of strontium in this solution.

¢) Growing and characterizing mineral precipitate under the influence of organic
macromolecular additives. The organic molecules, which would be either extracted from nacre
of molluscs or which would bear close resemblance to organic molecules from nacre, would be

incorporated in a supersaturated CaCO; solution in a number of ways, including:

i) Adding proteins to the parent mineralizing fluid, in solution.

ii) Placing substrates, with organized arrays of macromolecules on them, in solutions
supersaturated with respect to Ca’" and CO,*, and observing growth of mineral precipitate
particles on these prepared substrates.

iii) Producing organized assemblies of active organic molecules at the surface of the
supersaturated mineralizing solution, (2-D “self-assembled” films), and characterizing

precipitate which forms on these molecular films.

Macromolecular additives to the solution chemistry experiments will include:

(i) extracted organic matrix molecules from mollusc shells,
(i) derivatized rigid substrates (having active molecules affixed to their surfaces), and

(iii) Langmuir two-dimensional films of organized molecular arrays at the air/water interface.

II. EXPERIMENTAL APPROACH

2.1 Structural and Property Evaluation in Nacre
2.1.1 Mechanical Properties
Mechanical properties of a number of biological materials systems, for example, bone, teeth, and

shell, have been shown to be superior in comparison to the same properties of the monolithic form of
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mineral found in these materials. Nacre of the red abalone (haliotis rufescens) has been tested by other

members of the Sarikaya research group to determine toughness, strength, and hardness.

The testing applied to this material (nacre, from red abalone) evaluated fracture toughness,
through use of a straight-notched, three-point bend test, and fracture strength, by four-point bend testing.
Tests were made in the transverse direction, that is, properties were evaluated for the material direction
perpendicular to the shell plane. (ﬁe material (nacre) is not isotropic owing to the microarchitectural
organization of its flat platelets and organic ductile phase). Typical values gathered through these testing
methods indicate that o is approximately 185 + 20 MPa and K is approximately 8 + 3 MPa - m'”.
Scatter in the testing data has been attributed to: (1) defects/variations in the nacre and (2) the curved
shape of shells. The significance of the measured mechanical properties lies in the recognition that they
are more than 20 times higher than values of properties for monolithic CaCO, and that these values place
the material system nacre in the domain of high-performance composite ceramic materials such as B,C-
Al and WC-Co (both, cermets).

Fractography by SEM has been used to understand further the microstructure-mechanical

property relationships demonstrated by nacre.
2.1.2 Morphological and Crystallographic Studies by TEM
Characterization of nacre at the ultrafine scale will be performed using transmission electron

microscopy. The goals of microscopic analysis of nacre have been described in the “Task Areas” section.

Experimental procedure involved in making the TEM studies is detailed below.

Part 1: Sample Preparation

The principal requirement for producing a sample suitable for examination by transmission

electron microscopy is making a specimen of the material which is thin enough to permit transmission of
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electrons accelerated in a collimated beam by the instrument (TEM). To produce such samples, we

started with bulk samples of mollusc shell (from either abalone, pinctada, or nautilus).

Initial Thinning

Sections (rectangular beams or pieces of size and shape that can be handled by the wafering
saw) were cut from the shells using a water-cooled, hi-speed diamond saw, first, to produce manageable
pieces for further sectioning. Next, these sample blocks were sliced into thin (approx. .025 in. thick)
wafers using a low-speed, water-cooled saw, equipped with a diamond-coated wafering blade. Pieces
from these thin sections were thinned further by sanding them, starting with 600-grit SiC abrasiv¢ paper,
and finishing with 1200-grit abrasive paper. Mechanical thinning in this fashion was carried out until the
sample was as thin as it could be made while still capable of withstanding the strain of the abrasive
process without breaking into smaller fragments. This portion of the sample preparation process
demands patience and careful judgement to avoid destroying the specimen altogether. Typical final

sanded thickness was .002 or .001 in. (or less).

Ion Beam Milling and Final Thinning

The final step in thinning the specimen was ion beam milling. A thin piece of the specimen was
mounted onto a 3 mm copper disk (whigh would later serve as the specimen holder in the TEM sample
stage) which had an oval hole in its center. The sample was bonded to the edge of the oval hole in the
copper disk with silver paint, so that a portion of the sample projected over the edge of the oval hole.
The sample, mounted on the copper disk in this manner, was then placed into an ion-beam mill. Focused
ion beams of argon atoms accelerated to 6 KV struck the sample surface at a glancing angle of between
10 and 20 degrees. Their impact at the sample surface removed material from the sample at a controlled
rate by the transfer of kinetic energy from argon (beam) ions to sample atoms, which gjected sample

atoms from the crystal. Through frequent observation, it was possible to obtain a very thin region on the
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sample which would be useful for TEM examination. Final preparation of the sample for TEM involved
application of carbon coating to the sample; this was performed in a carbon evaporator. The thin layer of
(conductive) carbon deposited on the sample surface in a layer apprbximately 1000 A thick prevented

charge from building up on an otherwise insulative specimen.

Part 2: TEM Imaging

A brief summary of modes of operation applied in examination of the sample by TEM, and the

specific use of each mode, is provided below.

(i) Bright Field Imaging

Used extensively for inspection and overview of areas of the sample. In this mode, contrast is
generated between regions of the sample which diffract more or less strongly. The central transmitted
beam is allowed to continue after passing through the sample, to form the image of the region examined,
whereas diffracted electrons from the incident beam are blocked by an aperture (objective aperture)
which interacts wiih the electron beam after it has passed through the sample. Differences in

crystallographic orientation between neighboring platelets, and domains within individual crystals, will

be examined using bright-field imaging. .

(ii) Two-Beam Condition

Here, the sample is oriented so that a particular diffraction condition is achieved, namely, that
one diffracted beam from a specific crystalline plane is made to appear in the diffraction pattern for the
sample. The relationship between the index of the diffracted beam, the visibility of certain defects within
the sample, and the direction of Burgers vectors for allows one to estabish the geometry of atomic

arrrangement for such defects in an otherwise regular and periodic crystalline lattice. The same two-
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beam technique ca-m be used to characterize atomic displacement for other types of crystalline
imperfections (e.g., stacking faults) which involve specific displacement of atoms from their (perfect)
lattice positions. Once appropriate specimen orientation has been established by selection of a two-beam
condition in diffraction mode, a bright-field image of the region and features (defects) of interest is
obtained, and the visibility of certain defect features is checked. By positioning the sample (via tilt
capabilities of the microscope) in several distinct two-beam conditions, and examining the image at each
orientation and looking for the appearance or absence of defects, it may be possible determine the local
atomic rearrangement (departure from regular crystal lattice ordering) which characterizes the particular

defect. Two-beam analysis will be used to conduct defect analysis of biogenic and geologic aragonite.
(iii) Electron Diffraction

Diffraction patterns from crystalline solids provide information about local crystalline
orientation, lattice constants, and geometry of atomic arrangement in crystals. Diffraction (particularly
selected area diffraction) will be used to establish orientation relationships between different regions
within the nacreous solid. The significance in detecting such orientation relationships has been discussed

earlier, with relevance to nucleation of mineral on an organic matrix template.
(iv) Electron Spectroscopy

Electron-energy loss spectroscopy (EELS) provides information concerning the locai chemical
and physical environment of selected atomic species within the lattice of a crystalline solid material. The
mechanism by which EELS works is as follows. As electrons (from a nearly monoenergetic incident
beam in TEM) pass through a sample, some electrons suffer losses of energy as they interact with sample
atoms. Interaction may include ionization of sample atoms by ejection of their inner-shell electrons,
which become energized when accelerated electrons collide with them. Such collisions “cost” incident
electrons quantized amounts of energy, and through use of spectrometers positioned beyond the sample in
TEM, it is possible to determine the relative abundances of electrons which have lost various amounts of

energy (from their initial incident energy) in passing through the sample. This is the basis of the EELS
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technique, as applied in TEM. The output of an EELS experiment is a plot of the number (intensity) of
electrons emergent from the sample (after passing through it) at distinct energies below the incident beam
energy. The variation in energy-loss peak posi.tions from the expected ionization energies of inner-shell
electrons for isolated atoms can be related to the local chemical environment and ligand field of the
atoms in a solid. Thereby, EELS yields information about chemical bonding in solids. EELS can also be
used in a more simplified approach to give elemental/compositional information for a solid. In our

experimentation, we will employ EELS to make compositional analysis of biogenic and of geologic

aragonite, and to compare their compositions.
2.2 Biomineralization (Experiments in Nucleation and Growth of Precipitates in Solution)

2.2.1 Synthetic Systems: CaCO, Precipitation in Solutions

Several methods have been applied to grow the mineral aragonite (the crystalline polymorph of

CaCO, found in nacre) from supersaturated CaCO; solutions. Because the solubility product for the

reaction:
CaCO3(,) --> Ca” (aq.) + CO;v (aq.)

has different value depending on whether the crystal form (CaCOs; () is calcite or aragonite, calcite, with
lower solubility, will precipitate first, at room temperature, as concentration of Ca** and CO;” are
gradually increased. (The solubility product of aragonite is 6.9 x 10”° kmol’m™®, whereas that of calcite is
47x10° kmolzm'6) 4" However. in the biomineral system nacre, the crystal form of CaCQO; is
aragonite. Hence, in our experiments in biomineralization, a challenge we face is to synthesize aragonite

(as opposed to calcite) as precipitate from aqueous solution.

14 ¥ Simkiss and K.M. Wilbur, Biomineralization, (San Diego: Academic Press, 1989).
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A. Experimental Methods Examined

First Objective: Establish Conditions for Precipitation of Aragonite (rather than calcite) from Aqueous
Solution

Several methods were attempted to cause precipitation of aragonite from an aqueous
solution supersaturated in CaCO3. As a result, we were able to choose a preferred method with which we
would subsequently investigate mineral growth influenced by specific ions and by proteins. The methods

evaluated are described below.

Method 1: Elevated Temperature Conditions. Addition of Na,CO; to CaCl, in Solution to Cause

Precipitation

There are several methods by which one can precipitate aragonite from an aqueous
solution. First, one can raise the temperature of the solution from which the precipitate is generated.
From a supersaturated solution of CaCO; in distilled water at elevated temperatures (near the boiling
point of the solution) and at atmospheric pressure, aragonite will precipitate first'’® (whereas, in a
supersaturated solution (containing Ca** and CO,%) at room temperature, calcite would precipitate). In
our first attempt to grow aragonitic precipitate from aqueous solutions, we applied such an elevated
temperature approach. The particular method of crystal growth was described in literature in a paper by
Wray and Daniels'®. Briefly, it involves mixing into a 200 ml., heated (60°C), 0.1 M solution of CaCl;
20 ml. of 1.0 M solution of Na,CO,. Instantaneous white precipitate is generated as a product, since
upon addition of the precipitating agent. the product of ionic concentrations: [Ca2+ Il CO," ] reaches

nearly 0.01, which is far above the equilibrium value (discussed carlier) for either calcite or aragonite.

'S W.S. Fyfe and J.L. Bischoff, “The Calcite-Aragonite Problem,” DON’T KNOW JOURNAL, p. 8.
16 J L. Wray and F. Daniels, “Precipitation of Calcite and Aragonite,” Journal of the American Chemical
Society, 79, [9], 2031-2034 (1957).
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Method 2: Slow Addition of Precipitating Agent (Na,CO,), Inclusion of Magnesium Ions in Parent

Solution, Room Temperature Conditions

It has been widely recognized” that precipitate generated from solutions with Mg:Ca ratio of
5:1 or greater, at low temperatures, will be predominantly aragonite (this same ionic ratio is,
approximately, found in seawater). Taking these facts into account, a method for producing aragonitic
precipitate, which relied on influence of included mégnesium on precipitate, was investigated. This

method was préw'ously utilized by authors Kinsman and Holland'® to examine the effect of auxiliary

inorganic ions on precipitation product from solution. It consists, briefly, of:

(i) Starting solution of artificial seawater, a solution containing the principal ions, at their respective

strengths, that are found in ocean water."”

(ii) Slow addition of a dilute solution of precipitating agent Na,COs, due to which the concentration of
CO,” ions in solution will increase. thereby causing [Ca2+ I CO,” ] to exceed K paragonitey and result in the

precipitation of mineral phase.

(iii) Room temperature conditions.

17y Kitano, A. Tokuyama, and T. Arakaki, “Magnesian Calcite Synthesis from Calcium Bicarbonate
Solution Containing Magnesium and Barium Ions,” Geochemical Journal, 13, 181-185 (1979); S. J.
Carpenter and K.C. Lohmann, “Sr/Mg Ratios of Modern Marine Calcite: Empirical Indicators of Ocean
Chemistry and Precipitation Rate,” Geochimica et Cosmochimica Acta, 56, 1837-1849 (1992); Y. Kitano,
“A Study of the Polymorphic Formation of Calcium Carbonate in Thermal Springs with an Emphasis on
the Effect of Temperature,” NOT SURE OF JOURNAL, 35, [12], 1980-1985 (1962); W.S. Fyfe and J.L.
Bischoff, “The Calcite-Aragonite Problem,” NOT SURE OF JOURNAL, Pp. 3-13; and K. Sawada, T.
Ogino, and T. Suzuki, “The Distribution Coefficients of Mg2+ Ion Between CaCO; Polymorphs and
Solution and the Effects on the Formation and Transformation of CaCO; in Water,” Journal of Crystal
Growth, 106, 393-399 (1990).

'8y J. Kinsman and H.D. Holland, “The Co-Precipitation of Cations of Sr** with CaCO, - IV. The Co-
Precipitation of Sr*" with Aragonite Between 16 and 96 C,” Geochimica et Cosmochimica Acta, 33, 1-

17, (1969).
19 Artificial seawater was produced from a chemical formulation provided in:

J. Lyman and R H. Fleming, “Composition of Sea Water, » Journal of Marine Research, 111, [2], (1940).
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The addition of Na,CO, was made by using a slow, motor-driven syringe, delivering a dilute
(concentration = 0.01 M or less) solution of Na,CO, into the parent solution of artificial seawater. As
precipitating agent accumulated in the parent solution,a white, fine precipitate appeared at the bottom of

the solution, after it first became turbid.

Method 3: Supersaturation of Mother Solution by Dissolution of CO, Gas in Parent Solution

A final method has been assessed which appears to be appropriate for and consistent with
simulation of growth of CaCO; mineral under biogenic conditions. This method was first described by
Kitano™, a Japanese researcher in aqueous solution chemistry who has extensively investigated the
formation of CaCO, minerals in pearls and shells. This method involves dissolution of CO, gas in a
calcium-containing solution to create a temporary increase in the solubility of CaCO;. The procedure is

conducted, briefly, as follows:

(i) CaCO; is mixed and suspended in DI water to produce a concentration well above its solubility limit
in water of pH equal to 7. Powdered CaCO, is added to DI water in an amount which would pioduce a

solution of strength 10 mM if all were dissolved.

(ii) The solution is carbonated with CO, for approximately 24 hours, and simultaneously stirred using a
magnetic stirrer. No temperature control is employed; the experiment is run at room temperature. CO,
is supplied to the solution through a sparging tube (producing a fine stream of CO, bubbles from an input
gas tube which is submerged in the solution) which is connected to a tank of pressurized CO,. As CO; is
gradually dissolved in the solution through the process of sparging, the pH drops to a steady-state value

of between 4 and 5. Concomitantly. the solubility of CaCOs in this solution goes up.

%y Kitano and N. Kanamori, “Synthesis of Magnesian Calcite at Low Temperatures and Pressures,”
Geochemical Journal, 1, 1-10 (1966).
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(iii) During this extended period of carbonation, the solution has reached steady calcium ion
concentration levels. At this point, the carbonation is stopped for approximately 1 hour, during which the
solubility of Ca’" ions drops slightly, and pH rises slightly. Hence, in this interval, some small amount of
CaCO, that has been dissolved (from its initial suspension) will reprecipitate. After resting (without
carbonation) for approximately 1 hour, the solution is filtered using a vacuum filtration unit (pore size,
0.2 pm) to eliminate any residual solid material remaining in the reaction vessel, as such material could

act as unwanted seed crystal in experiments which are designed to investigate homogeneous nucleation.

(iv) Mg, from MgCl,, is added into the initial mixture of chemicals included in the solution. Mg is added

in quantity that will result in parent solution ion concentrations [Mg”]:[Ca:*] = (approx.) 5:1.

(v) At this point, other inorganic ionic additives and, in the future, organic macromolecular components

(such as proteins from mollusc shells) are introduced to the (parent) solution medium, which is be

saturated with respect to CaCOs.

(vi) The solution is then carbonated for 1 additional hour to assure the dissolution of any (possible)

remaining solid crystalline material, and to establish a maximum dissolved CaCO; concentration in the

parent solution.

(vii) The “prepared” parent solution is set aside, and carbonation by CO, stopped. With the evasion of
dissolved CO, from the uncarbonated solution, the solubility of CaCO; in this solution decreases. Asa

consequence, precipitation of solid CaCO; occurs.
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B. Discussion of Techniques for Synthesis of Aragonite Precipitate

Background: Growth of the Mineral Phase (CaQ3) in Mollusc Shells - The Model for Biomimicking

FExperiments

In mollusc shells, the process of growth of the shell occurs when calcium and carbonate ions
from the fluid adjacent to the shell surface are deposited onto and bond to existing shell mineral
crystallites or when these ions contribute to nucleation of new crystalline particles. The calcium
carbonate solid material in mollusc shells is either polycr_vstzilline (as seen in the calcitic region of the
shells) or is an aggregate of a number of single-crystalline tablets. Particles (individual single crystalline
regions) frequently display preferred orientation. Several distinct polymorphic forms of calcium
carbonate have been shown to comprise mollusc shell [i.e., calcite (crystal type: rhombohedral),
aragonite (crystal type: orthorhombic), and vaterite (amorphous)].

There are many factors which influence the formation of the various types of calcium carbonate
in biological systems. Within the shelled molluscan organism, the growing shell inner surface is adjacent
to the extrapallial fluid (or, E.P.F.). This term refers to the liquid found in the cavity between the
external covering of the soft mollusc organism (this portion of the organism is known as the “mantle™),
and the inner surface of the shell. The composition and ionic concentration of this E.P.F. may be
controlled by release of ions (through the mantle) and other means, and by the allowed influx of new
seawater into the cavity. In addition, the mantle is responsible for the release of organic components into
the extrapallial space. While the inorganic ionic components of the E.P.F. are clearly necessary for the
formation of new mineral from the solution, the role played by the organic components is not known.
Some investigation has been made to determine the influence of other inorganic ionic species, such as

Sr** and Mg*" ions, on the crystal type of mineral preci itated”'. Presence of Mg"" at concentrations five
g b Yp precip g

21 7.J. Kinsman and H.D. Holland, “The Co-Precipitation of Cations with CaCO3 - IV. The Co-
Precipitation of Sr** with Aragonite Between 16 C and 96 C,” Geochimica et Cosmochimica Acta, 33, 1-
17 (1969); and Y. Kitano, A. Tokuyama, and T. Arakaki, “Magnesian Calcite Synthesis from Calcium




times or more than that of Ca®" will act, apparently, to favor precipitation of aragonite over calcite.
Though the specific chemical processes leading to control of crystal formation, orientation, and particle
size in nacre have not been demonstrated or mimicked in vitro, it is suspected that periodic deposition of
sheets of organic matrix over the aragonite crystals of the nacreous layer may retard growth of basal
planes of aragonite, resulting in formation of tablets of nearly uniform thickness and consistent breadth.
In our attempt to develop an understanding of how, in nacre, calcium carbonate solids form in
specialized shape and display unusual microarchitecture, we would like to imitate as closely as possible

the process of mineralization described above as using laboratory techniques of aqueous solution

chemistry.

Discussion of Precipitation Techniques Attempted So Far

Discussion of Wray and Daniels Technique (Method 1)

This method of aragonite production features several disadvantages which make it not suitable
for use in simulation of biogenic production of aragonite in nacre. First, the temperature applied is unlike
that found in biological systems where nacre grows. In the case of red abalone, for example, the
organism resides at shallow ocean depths along the coastal waters of the Pacific Coast from Washington
State to Baja, California. where temperatures fall in the range 10-15° C. The high-temperature regime of
this synthetic process seems quite different. In addition, rapid supersaturation of the parent solution using
this method will not produce near-perfect, faceted, single-crystalline particles. The resultant precipitate
from this process tends to be rough, agglomerated, and irregular in morphology. The relative surface
energies of distinct crystalline faces are unable to manifest themselves through the adaptation of distinct
morphology when the degree of supersaturation is high, as in the case of this experimental technique.

Hence. this technique is not well suited to explore the effects of ionic and organic molecular additives on

Bicarbonate Solution Containing Magnesium and Barium lons,” Geochemical Journal, 13, 181-185
(1979).
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particle morphology. Growth of relatively defect-free crystalline material requires a solution
concentration just above saturation, in the region where conditions are “labile”.” Examples of aragonite
particles grown using this approach are presented in Figure 4 (in Appendix: Figures); the irregular
morphology is apparent in these photos. A diffraction pattern for this precipitate is shown (in Figure 4)
as well. By comparing of this X-Ray diffraction pattern with that from a sample of powdered geological
aragonite crystal (diffraction pattern for powdered geologic aragonite is also presented in Figufe 4,
following the diffraction pattern for the synthetic precipitate), one can confirm that this precipitate is

aragonite.
Discussion of Kinsman and Holland Precipitation Technique (Method 2)

Using the second technique described in the experimental procedure section, production of
aragonite from solutions saturated in Ca”" and CO,” ions was feasible at low (room) temperature.
Precipitation of aragonite under these conditions depends on the influence of (other) inorganic ions in
saturated CaCO; solutions to determine the crystal form of precipitate. Numerous studies® have been
made which explore the effect of composition of the mother solution and the auxiliary inorganic ion
species in saturated CaCOj solutions on the crystal form of the precipitate. A reference point to examine
in determination of the proper composition for the “mothér liquor,” to use in generating precipitate, is the
jonic strength of seawater. Mineralized calcium carbonates which solidify from seawater compositions
are typically aragonite™ . The composition of seawater has been examined in several oceanographic
surveys, but relatively recently, it was comprehensively detailed by Lyman and Fleming (1940). In their

work™, they indicated the following composition for marine seawater:

H.E. Buckley, Crystal Growth, (New York: Wiley, 1951).

References which explore the effect of auxiliary inorganic ions on mineralogy of precipitate from
aqueous solution.

7 W. Morse, “The Kinetics of Calcium Carbonate Dissolution and Precipitation,” Chap. 7 in
“Carbonates: Mineralogy and Chemistry,” (ed. R.H. Reeder) Reviews in Mineralogy, 11 (1983).

37 Lyman and R.H. Fleming, “Composition of Sea Water,” Journal of Marine Research, I, [2] (1940).
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Table of Hypothetical Composition of Ions in Sea Water
(Recipe to Prepare 1.0 liter Artificial Seawater, from Compounds)

Salt | NaCl MgCl, | Na,SO, [ CaCl, [ KC1 | NaHCO; | KBr | H;BO, SrCl, | NaF | Sum

H,0 to:

Gms. | 23.477 | 4.981 3.917 1.102 | 664 | .192 096 | .026 .024 003 | 34.482

1000

Though it was confirmed that the precipitate formed via application of this technique was
aragonite (by X-ray powder diffraction, where powdered precipitate sample was collected from the
bottom of the reaction vessel, isolated by filtration, and dried), the morphology of crystalline samples
produced in this fashion was, still, highly irregular. rough, and nonfaceted. It seemed difficult or
impossible to overcome local high supersaturation and establish “labile” required for satisfactory near-
perfect crystal growth, when the precipitating agent was added in this manner. Even use of very dilute
solutions Na,COj; and very slow addition of these solutions produced uneven, rough precipitate particles.
Examples of the morphology generated in this way are shown in SEM micrograph in Figure 5 (in
Appendix: Figures). An X-ray diffraction scan for this precipitate is shown below the SEM

microphotograph (in Fig. 5), confirming that this material is aragonite.

Discussion of Kitano Technique (Afethod 3)

From the description of the “Kitano Technique” for production of a supersaturated solution and
associated precipitation of CaCOs, it can be gathered that this method approaches the conditions of
biological mineralization that are seen in living organisms. Moreover, the change in supersaturation of
the solution depends on the relatively gradual process of escape of CO, from the solution, which results
in a gentle driving force for nucleation, crystal growth, and precipitation. The imitation of the biological

event by this in-vitro process seems more accurate than by the two methods mentioned earlier;
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precipitation seems controlled by pH, occurs at low temperature, and can be made to occur from

solutions close in composition to seawater, or to that of the extrapallial fluid in molluscs®.

2.2.2 Biomineralization Strategies: A Review of Literature

(i) In solution
Crystal growth from aqueous solution has been pursued in two primary directions pertinent to
the study of mineral growth in living organisms. These are:
«Selection of polymorphic form and analysis of crystal growth kinetics as related to composition
of the parent solution from which the solid material is nucleated, and
eInfluence of proteins mixed into the initial parent solution over the resultant precipitate

produced.

Kitano has explored the influence of additions of magnesium and barium to solutions
supersaturated in CaCO; by bubbling of CO, gas.27 He found that the addition of magnesium favored
formation of aragonite, whereas addition of barium favored calcite formation. Examples of
experimentation into the influence of organic molecules on crystal form include wnvestigation of the
interaction of macromolecules from sea-urchin spine and from moltusc Aytilus Californianus with
solutions of growing calcium maleate and calcite. Morphology of crystals grown in presence of these
macromolecules was compared to that of crystals grown in absence of any macromolecular additives.”™
In another studyzg, soluble organic extracts from red abalone (H. Rufescens), Nautilus (Naufilus Sp.), and

Atlantic Razor Clam (Siliqua Costata) were added to solutions supersaturated in CaCO;, and growth of

* M.A. Crenshaw, “The Inorganic Composition of Molluscan Extrapallial Fluid,” Biol. Bull., 143, 506-
512.

*7Y. Kitano, A. Tokuyama. and T. Arakaki, “Magnesian Calcite Synthesis from Calcium Bicarbonate
Solution containing Magnesium and Barium Ions,” Geochemical Journal, 13, 181-185 (1979).

2 A. Bemner, L. Addadi, and S. Weiner, “Interactions of Sea-Urchin Skeleton Macromolecules with
Growing Calcite Crystals - a Study of Intracrystalline Proteins,” Nature, 331, [6156], 546-548 (1988).
 R. Humbert, M. Sarikaya, and C. Furlong, “Layered Aragonitic Particles from Mollusc Shell Extracts,”
Unpublished research (1994).

29




layered pearl-like structures was observed in some cases. Other examples of studies (crystal growth in
presence of organics) of this tvpe exist. However, it should be noted that the charateristic brick-and-

mortar, inorganic-organic microcomposite structure in nacre has not been produced synthetically in vitro

through such an experimental approach.

(ii) On Rigid Substrates

Experimentation in growth of calcium carbonate on solid substrates has explored the use and
influence of a variety of seed crystals and their effect on crystal form produced from supersaturated
solution. Sabbides e. a/* investigated growth of mineral atop seed crystals of calcite, aragonite, and
vaterite from supersaturated artificial seawater solutions. Irrespective of which seed crystal was
employed, the resulting precipitate was found to be aragonite.‘ This result, in turn, was attributed to the
high magnesium content in seawater. A study has also been performed investigating the growth of
mineral phase atop a class cover slip inserted in the extrapallial space of a live mollusc.” Finally,

through use of the atomic force microscope, growth of mineral atop molluscan nacre, from supersaturated

solution, has been characterized.

III. Experimental Results

3.1 Structure of a Biological Composite: Nacre of Mollusc Shells

3.1.1 Morphology, Substructure, and Composite Structure of Nacre

3 T Sabbides and P. Koutsoukos, “The Crystallization of Calcium Carbonate in Artificial Seawater, the

Role of the Substrate,” Journal of Crystal Growth, 133, 13-22 (1993).
31§ Mann? D. Morse? Abalone? LOOK UP THE REFERENCE ON GROWTH OF MINERAL ON

GLASS SLIDE IN EPF.
32 R_ Giles, S. Manne, S. Mann, D.E. Morse, G.D. Stucky, and P.K. Hansma, “Inorganic Overgrowth of

Aragonite on Molluscan Nacre Examined by Atomic Force Microscopy,” Biological Bulletin, 188, 8-15
(1995).
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There have been numerous scientific studies made concerning the structure of sea shells, the
specific structure of nacreous hard material found in shells, and investigations of specific components of
nacre, such as the soluble and insoluble fractions of the organic matrix”, and crystalline tablets of
aragonite found in nacre™*. Boggild35 produced a significant contribution to the early understanding of
the various distinct structural regions of nacreous shells in his paper, published in 1930. K. Wada, over
the years 1960-1985, has published substantial amounts on various studies performed which concern
nucleation and crystal growth in molluscan shells®®, and on research into chemical mechanisms involved
in shell growth. Sarikaya37 has written several papers which provide greater insight into the hetrarchical
structure and microarchitecture found in the microcomposite nacre, with emphasis on crystallography and
microstructure of aragonite tablets in nacre. Currey” has considered the structure of nacre in terms of the
advantages and performance exhibited by this material system, and the superiority of its mechanical

properties. Stephen Weiner and Steven Mann have published extensively” on their views on the

3 K M. Wilbur and K. Simkiss, “Calcified Shells,” Compr. Biochem., 26A, 229-295 (1968). and S.
Mann, “Mineralization in Biological Systems,” Struct. Bonding (Berlin), 54, 125-174 (1983).

3 N. Watabe, “Shell Structure,” in The Mollusca (E.R. Trueman and M.R. Clarke, Eds.), 111, (San
Diego: Academic Press, 1988), 69-104. and J.G. Carter and G.R. Clark, “Classification and Phylogenetic
Significance of Molluscan Shell Microstructure,” in “Molluscs: Notes for a Short Course,” (T.W.
Broadleaf, Ed.), Dep’t of Geol. Sci. Stud. Geol. 13, (Knoxville, Tenn: Univ. of Tennessee, 1985), 50-71.
35 0.B. Boggild, “The Shell Structure of Molluscs,” K. Dan. Vidensk. Selsk. Skr. Naturvidensk. Math.

Afd., 9, 233-326 (1930).

*® K. Wada, “Studies on the Mineralization of the Calcified Tissue in Molluscs - V. Radioautographic
Investigations on the Patterns of Layer Formation,” Bulletin of the Japanese Society of Scientific
Fisheries, 30, [6], 467-471 (1964), 465-471; K. Wada, “Studies on the Mineralization of the Calcified
Tissue in Molluscs - IT1. Localization and Distribution OF 45Ca in the Mantle Tissue and on the Growing
Shell Surface in Several Marine Bivalves by Radioautography,” Bulletin of the Japanese Society of
Scientific Fisheries, 30, [5], 385-392 (1964); K. Wada. “Studies on the Mineralization of the Calcified
Tissue in Molluscs - II. Experiments by the Administration of Tetracycline on the Mineralization of the
Shell,” Bulletin of the Japanese Society of Scientific Fisheries, 30, [4], 326-330, (1964); K. Wada.
“Studies on the Mineralization of the Calcified Tissue in Molluscs - XII. Specific Patterns of Mon-
Mineralized Layer Conchiolin in Amino Acid Composition,” Bulletin of the Japanese Society of

- Scientific Fisheries, 32, [4], 304-311 (1966); and K. Wada. “Studies on the Mineralization of the
_ Calcified Tissue in Molluscs - XI. Comparative Biochemical Study on the Amino Acid Composition of

Conchiolin from Calcitic and Aragonitic Layers,” Bulletin of the Japanese Society of Scientific Fisheries, -
32, [4], 295-303 (1966).

7 M. Sarikaya, J. Liu, and I.A. Aksay, “Nacre: Properties. Crystallography, Morphology, and
Formation,” Unpublished research, and M. Sarikaya, J. Liu, and I.A. Aksay, “Hierarchical twin
Structures in the Nacre of Red Abalone Shell,” 948-949.

3 J.D. Currey, “Biological Composites,” in Handbook of Composites, 4, Ch. 9, 120-196.

3 . Mann, “Molecular Recognition in Biomineralization,” Nature, 332, 119-124 (1988). and S. Weiner
and W. Traub, “Macromolecules in Mollusc Shells and their Functions in Biomineralization,” Phil.

Trans. R. Soc. London B, 304, 425-434 (1984).
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interrelationship of the organic and inorganic phases in nacre; in these papers extensive description of the

structure of these materials systems is included.

Distinct Goals, Microscopic Study of Nacre

Goal 1: Determination of Preferred Orientation of Neighboring Platelets

The first aspect of nacre investigated involves examination of crystallographic orientation and
disposition for individual platelets of aragonite found in nacre. By investigating this issue, we aimed to
uncover a pattern or ordering among neighboring crystalline platelets that could be interpreted as
evidence of higher organizational control and regulation by the organic matrix or process of
biomineralization over the crystalline fabric of nacre. Weiner and Traub* in 1980 published results of a
study in which electron diffraction patterns generated simultaneously by the organic matrix and by the
mineral (aragonitic) phase in nacre were recorded. This work claimed to demonstrate a distinct and
direct relationship between periodically spaced groups in the conformational structure of the organic
matrix and specific crystal directions in the mineral phase. This spatial relationship could be viewed as
evidence for an epitaxial relation/interaction between the matrix and the crystal. If a stereochemical
correspondence between matrix and mineral did, in fact, exist, one should be able to detect a
manifestation of this effect from patterns of crystallization among neighboring aragonitic platelets in
nacre. The study I have performed used electron diffraction, carried out in a transmission electron
microscope, to determine crystallographic information. To study the individual nacre tablets,
microdiffraction was emploved. using selected area apertures to kpermit diffraction from one aragonitic

platelet at one time. This study has yielded two primarv conclusions:

40 5 Weiner and W. Traub. “X-Ray Diffraction of the Insoluble Organic Matrix of Mollusc Shells,”
FEBS Letters, 111, [2], 311-316 (1980), and S. Weiner, Y. Talmon, and W. Traub, “Electron Diffraction
of Mollusc Shell Organic Matrices and Their Relationship to the Mineral Phase,” Int. J. Biol. Macromol.,

5, 325-328 (1983).
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(i) Neighboring platelets are not strongly aligned in a and b axial directions. Samples of nacre
were surveyed from an edge-on perspective. and the relationship between the [110] directions in adjacent
platelets was compared. [n photo (a). in Figure 6, a TEM bright-field micrograph from such a surveyed
region is shown. A polar plot of the relative orientation of [110] in the neighboring platelets is presented
in Graph(a), below the TEM micrographs. The respective platelets from which the diffraction was taken
are numbered in the microphotograph: the orientation of [110] in each is correspondingly numbered in
the polar plot.

(ii) The c-axial direction of neighboring aragonite platelets is strongly coincident.
Microdiffraction was applied to adjacent individual platelets of several nacre samples which were
prepared with the foil surface parailel to the flat surface of the aragonite platelets. From these diffraction
experiments, it was clear that the [001] direction in the platelets, normal to their flat surface, varied only
a few degrees from platelet to platelet. In Photo (b), in Figure 6, an example (TEM bright-field
micrograph) of a region examined in this way is shown. In the corresponding polar plot for the relative
orientation of [100] in this region, shown in Graph(b), the corresponding orientation for [110] in each .

platelet is indicated.

Figure 6: (a) TEM BF Image, Neighboring Platelets, Edge-On Direction
(b) TEM BF Image, Neighboring Platelets, Face-On Direction
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Graph(a): Polar Plot, [110] Direction for Neighboring Platelets, Viewed from Edge-on Direction
Graph(b): Polar Plot, [001] Direction for Neighboring Platelets, Viewed from Face-On Direction

Goal 2: Comparison of Microstructure of Nacre from Different Organisms

A second TEM-based experiment examined the relative microstructure of nacre from different

species of mollusc. It is known"' that in the heterogeneous mixture of macromolecules known as the

organic matrix, the composition varies from one molluscan organism to the next. The question under

consideration is, does this variation in organic phase composition affect any microstructural features of

the nacre, and how does it do so?

To explore this issue, samples of nacre were sectioned from shells of three different molluscan

organisms. Nacre samples were obtained from the shells of the nautilus (Nautilus Pompilus), red abalone

(Haliotis Rufescens), and the Pearl Oyster (Pinctada Margaritifera). The samples were sectioned, using

4l M. Cariolu and D.E. Morse, “Purification and Characterization of Calcium-Binding Conchiolin Shell
Peptides from the Mollusc, Haliotis Rufescens, as a Function of Development,” J. Comp. Biol. B, 157,

717-729 (1988).
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a water-cooled diamond wafering saw. and reduced to thickness suitable for study by transmission
electron microscopy through sanding, followed by low-temperature ion milling. The TEM study yielded
the following results and conclusions, concerning the morphology, microsructure, and microarchitecture

of the composite material in the three nacre samples:

(i) Platelet thickness was approximately the same for the abalone and nautilus sample, at
approximately 0.5 um or slightly less. The nacreous platelets from pinctada averaged 0.7 pm in

thickness.

(ii) The organic matrix layer in nacre of nautilus appears to be substantially wider than that of

nacre of pinctada and abalone.

The primary conclusion is that the nacre from all three organisms showed remarkable similarity,
despite organismal variation and differences in the composition of their respective organic matrices.
From earlier research® into the composition of the organic matrix, the composition of organic matrices
for several different molluscs has been determined. The following table details the amino acid
compositions of organic matrices from mollusc shells. The data used in developing this table, it should
be noted, originated in several different sources in published literature on molluscan nacre and

biomineralization.

“2 M. Sarikaya, J. Liu, and [.A. Aksay, “Nacre: Properties, Crystallography, Morphology, and
Formation,” Unpublished research.
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Table: Amino Acid Compositions of Mollusc Shells

Organism Whe | Asx | Thr Ser Glx Pro Gly Ala Val Tyr ref.
re
H. Rufescens w 250 | ? 102 |82 ? 48.5 4.52 ? ? L
200 120 92 4.3 3.6 184 17.1 ? ? il.
P 20.0 11.0 6.8 5.7 5.7 11.0 6.8 ? ? ii.
N. Pompilus WI 7.1 1.3 9.8 4.5 0.5 353 25.0 1.4 0.6 iii/iv.

N 2.0 1.3 6.3 6.7 0.0 19.7 48.0 23 0.0 V.

NS 26.1 148 7.9 6.6 4.6 23.6 44 1.5 6.4 vi.

P. P 9.4 2.9 3.9 22 5.6 223 32 ? 5.5 vii.

Margaritifera

Key:

N: Nacre Only, P: Prismatic Only, NS: Nacre-Soluble Proteins, W: Whole Shell, WI: Whole Shell,

Insoluble fraction only.

References:

i. M. Cariolu and D.E. Morse. “Purification and Characterization of Calcium-binding Conchiolin Shell
Peptides from the Mollusc, Haliotis Rufesccens, as a Function of Development,” J. Comp. Biol. B, 157,
717-729 (1988).

ii. N. Nakahara, G. Bevelander, and M. Kakei, “Electron Microscopic and Amino Acid Studies of the
Outer and Inner Shell Layers of Haliotis Rufescens,” Venus, 41, [1] 34-46 (1982).

iii. M.F. Voss-Foucart, “Essais de Solubilization et de Fractionnement d’une Conchioline (Nacre Mulare

de Nautilus Pompelius, Mollusque Cephalopode),” Comp. Biochem., 26, 877-886 (1968).
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iv. E.T. Degens, D.W. Spencer, and R H. Parker, “Plebiochemistry of Molluscan Shell Proteins,” Comp.
Biochem. Physiol., 20, 553-579 (1967).

v. S. Weiner and L. Hood. “Soluble Protein of the Organic Matrix of Mollusc Shells: A Potential
Template for Shell Formation,” Science, 190, 987-989 (1975).

vi. G. Goffinet and C. Jeuniaux, “Composition Chimique de la Function “nacrpine” de la Conchioline de
Nacre de Nautilus Pompelius Lamarck,” Comp. Biochem. Physiol., 29, 277-282 (1969).

vii. S. Tanaka, H.Hatano, and O. Itasaka, “Biochemical Studies on Pearl. IX: Amino Acid Composition

of Conchiolin in Pearl and Shell,” Bull. Chem. Soc. Japan, 33, 543-545.

In separating the organic matrix from the mineral phase (by dissolution of the mineral phase (aragonite)
through use of a weak acid such as EDTA), it is impossible to preserve higher-level structure which may
contain significant “information” that could affect mineral growth atop the matrix layer. Because of this
limitation, it remains unfeasible to make a comparison of the respective structures of the organic matrices
from different organisms. Hence, comparison is made (as above) between the relative amino acid
compositions of the organic matrices from different nacre samples.
s, ( dprein: Py
In Figure , a composite micrograph containing images of nacre from all three organisms is

presented. In this view, features of the nacre from different species can be distinguished.
Goal 3: Comparison of Microstructure: Aragonite from Nacre, and Aragonite of Geologic Origin

To complete characterization of nacre, and aragonite, from moltusc shell, we compared features
in the microstructure of biogenic aragonite with microstructural features of geological aragonite. We
have commented, already, on prominent differences in the morphology of aragonite from biogenic and
from geologic sources. Biogenic aragonite in nacre occurs in flat, thin, polygonal platelets, whereas
geological aragonite assumes a columnar, hexagonal morphology. In addition to this morphological

comparison, we have explored whether there are substantial differences in the fine-scale features and
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defect structures in these two distinct materials. If differences do exist at the ultrafine scale level, these
differences, in addition to those in the morphology of the two systems, could be associated with the
respective conditions of formation under which these materials were generated. I have used TEM
analysis, as discussed earlier, to examine the substructural features found in biogenic and in geologic
aragonite. A summary of the results of comparison of microstructural features the two systems display is

provided in the table, below. (In the table, BA is used to indicate Biogenic Aragonite, and GA is used for

Geologic Aragonite).
Microstructural Abundance Comments
Feature
Dislocations BA: Moderate
GA: Low or none
Stacking Faults BA: Low
GA: Moderate
Grain Boundaries BA: Incoherent, Separated by
Organic, Smooth
GA: Jagged, Semicoherent
Twins BA: Moderate BA: Hierarchical Twinning
GA.: Very High GA.: Coarse and Fine Twins
Voids BA: High
GA: None

The following TEM micrographs, found in Figure 7 (See Appendix: Figures) show examples of

the types of defects found in each material system that are indicated in the table.
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(#1) An overview, at high magnification, of aragonite from:

(a) Biogenic source: Mollusc shell nacre (Nautilus)
(b) Geologic source: Aragonite mineral, from Idaho

Several defect structures are visible in the respective materials systems, and are noted in the

markings on this micrograph.

(#2) Dislocations in geologic aragonite.

(#3) Grain boundaries in biogenic aragonite (a) and in geologic aragonite (b).
(#4) Stacking Faults in geologic aragonite.

(#5) Voids in Biogenic Aragonite.

(#6) Twins in Geologic Aragonite (a) and in Biogenic Aragonite (b).

In summarv, the microstructural fabric of geologic aragonite appears to contain a higher
concentration of defects than does that of biogenic aragonite. This may be attributable to pressures and
stresses at the site of formation of geologic aragonite that are not experienced by biogenic aragonite in its
formation, and this may be due in part. as well, to the influence of organic matter in nacre on the

formation of crystalline aragonite tablets.

Goal 4: Compaﬁson of composition, Biogenic and Geologic Aragonite

Composition of distinct types of aragonite (biogenic and geologic) has been determined with
use of microprobe Energy Dispersive Specﬁoscc;py (EDS) in TEM. Compositional analysis for aragonite
from Nacre of Pinctada, Abalone, and Nautilus is indicated in the EDS plots provided on the following

page. In addition, composition of geological aragonite is provided in a separate plot.
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Future Microscopic Studyv of these Materials:

eHigh resolution imaging (using TEM) of both materials, to compare structure,

eComparison of lattice parameter, using convergent beam electron diffraction (CBED) technique, and

eComparison of chemical environment of calcium, through use of electron energy loss spectrum (EELS)

method.
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3.2 Investigation of Biomineralization (4ccomplished and Planned Research)
3.2.1 Synthetic Systems: CaCO; Precipitation in Solution

Part 1: Without Habit-Modifying Ionic Components

Using the method of supersaturation of calcium-carbonate aqueous solution through carbonation
with respect to CO, (discussed earlier, known as the Kitano techniqué), a range of parent-solution
compositions were produced, and the characteristics of the precipitate produced from such solutions was
examined. The choice of which compositions for parent solutions that would be assessed followed a

strategy in which the goals were:

First, to vary the level of magnesium present in solution, thereby producing different Mg2+:Ca2+
ionic ratios in solution, until the relationship between the relative abundance of these two elements and

the mineralogy of the resultant precipitate (either calcite or aragonite) was established.

Second, to examine the product of precipitation from a solution whose composition closely

mimicked that of seawater.

Third, to return to a simplified solution whose primary constituents in solution were Ca’* and
Mg’ ions (at correct ratio to vield aragonitic precipitate, as established by the first set of experiments)
and CO;' ions. To this parent solution composition, selected inorganic ions found in sea water were
added. one at a time. In this way, we investigated the effect (as growth modifiers) of specific inorganic
jons. The inorganic ions were included in the parent solution at concentrations half, one time, and two

times their respective concentrations in seawater.
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Results of Experiments

Part 1: Ca/Mg Solutions

In the initial phase of experiments in which morphology of precipitate particles is controlled by
and related to parent solution composition, the influence of magnesium on characteristics of precipitate
was examined. Solutions initially were supersaturated in Ca*" and C032' (by CO, carbonation). To these
solutions, Mg, in the form MgCl,, was added. The relative proportion of Ca’ and Mg2+ in these solutions
was varied systematically. Experiments which generated precipitate were run from solutions which
contained no magnesium, and magnesium at concentrations 1.0X, 5.0X, and 7.5X the concentration of
calcium in the parent solution. The calcium concentration ([Caz*]) for these solutions was 10 mM, which

approximates the concentration of this component in seawater.

Photos of precipitate generated from solutions containing only CO;Z', Caz+, and Mg2+ are
presented in Figure 9 (in Appendix: Figures). The most regular, faceted crystal particles were grown
from the initial solution without any magnesium. As magnesium content for the solutions was increased
(in solutions where the Mg:Ca ratio was 1:1, 5:1, and 7.5:1), the precipitate particles, as shown in Figure

9, became increasingly acicular and irregular.

Mineralogy of the precipitates, determined by XRD of dried and powdered precipitate, was
calcite for the no-Mg solution, for the 1:1 Ca:Mg solution, a mixture of calcite and aragonite, and for the

5:1 and 7.5:1 solutions, aragonite.

The results, in terms of both morphology and mineralogy of particles, is consistent with the
theory that magnesium can disrupt nucleation and growth of calcite when present in aqueous solutions,
and that in sufficient quantity, the magnesium will make formation of aragonite favorable. The resuits

have enabled us to establish conditions which would permit formation of aragonite from solutions
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supersaturated in Ca’" and CO,", by adjusting the Mg®" content of such solutions. These “recipes” for
growth of aragonite precipitate will, in turn, be useful for subsequent experimentation in growth of

particles of aragonite of controlled shapes as seen in mollusc shell nacre.

Part 2: Particles grown from Parent Solution in which Mg:Ca Ratio was 5:1, with Addition of Selected

Inorganic lon Species, as Growth Modifiers

Additional experimental work on habit modification for precipitated CaCO; solid investigated
the effects of four different ionic species, namely Sr, Li, K, and Ba. The matrix below details the set of
12 experiments which were conducted. in which these ions were added (from solid halide compounds) to
a parent solution with a 5:1 Mg:Ca ratio. The ions chosen represent the major ionic constituents of
seawater (aside from Na"and CI). These ions were individually included in the parent solutions at
concentrations near levels found in seawater. SEM micrographs of morphology of typical precipitated

particles from each ionic addition are shown in Figure 10 (in Appendix: Figures).
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Compo., Conc,, Volume ot | lon From What Dilute Amount Conc. of Actual Jon
Mother Magnesium | Mother Species Compound Solution Solution Ton Concentration
Solution, Solution Added Conc., [on Added Relative

Calcium Addition to Seawater

4.5 mM 22.5mM | 100 ml Sr SrCl,6H,O0 . | 0.01 M 1.514 ml. 1.0X 0.1514 mM
4.5 mM 22.5mM | 100 ml Sr SrCl, 6H,0 001 M 3.028 ml. 20X 0.3028 mM
4.5 mM 22.5mM | 100 ml. Sr SrCl,6H,0 001 M 0.757 ml. 05X 0.0757 mM
4.5 mM 22.5mM | 100 ml. Sr SrCO, 001 M 1.514 ml. 1.0X 0.1514 mM
4.5 mM 22.5mM | 100 ml Sr SrCO, 0.01 M 3.028 ml. 20X 0.3028 mM
4.5mM 225mM | 100 ml. Sr SrCO, 001 M 0.757 ml. 05X 0.0757 mM
4.5 mM 22.5mM | 100 mkL Li LiCl 1.0M 23 ml not sure .023 mM
4.5 mM 22.5mM | 100 ml. Li LiCl 1.0M 8.0 ml. not sure .080 mM
4.5 mM 22.5mM | 100 ml. Li LiCl 1.OM 23.0 ml. not sure 23 mM
4.5 mM 22.5mM | 100 ml. K KCl 0.001 M 9.445 ml. 1.0X 9.445 mM
4.5 mM 22.5mM | 100 ml K KCl 0.001 M 18.89 ml. 20X 18.89 mM
4.5 mM 22.5mM | 100 ml. K KCl 0.001 M 4.7225 mi. 05X 4.7225 mM

One of the aims of the investigation of the effect of habit modifiers was to uncover a specific

composition whose precipitate resembled the particles generated in nacre, produced through biologically-

controlled precipitation. These particles (in nacre) are platelet-like, approximately 0.5 pm thick, 5-10

pm in breadth across their flat surfaces (dimensions gathered through TEM examination of nacre

samples), and polygonal in shape (as viewed facing the flat surface). We plan to utilize the composition

which produces such nacreous-like platelets in subsequent mineralization experiments where organic

molecular components are included in the parent solution The Sr** - influenced precipitate did show such

platelet-like particles in some of the precipitate generated. Images (via SEM) of Sr** influenced

precipitate particles are shown, below.
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Figure 11: Photos, Platelet-like Particles from Addition of Sr
3.2.2 Biomineralization Strategies in Presence of Organics °
Part 4: Mineral Growth in Presence of Organic Molecular Additives
@
Following exploration of the character of precipitation from solutions containing Ca2+, Mg2+,
and selected inorganic ions/growth modifiers, we have started to examine the effect of orgainc
macromolecules in similar solutions on morphology of precipitates. Initial results for addition of ®
macromolecules extracted from mollusc shell nacre are presented in Figure 11 (?) (in Appendix: Figures).
The macromolecules added in these experiments represent a portion of the organic component of °
molluscan shell nacre. Specific fractions of extracted molecular components from organic matrices of
abalone shell were isolated by:
(a) Crushing (dried) abalone shells ®

(b) Dissolving (removing) the mineral portion of the shells with weak acid (EDTA)
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(c) Eliminating the dissolved CaCO, by membrane dialysis

(d) Isolating residual proteins from EDTA solvent.
The protein extracted in this manner was added to 10 mM Ca™, 50 mM Mg2+ solution at concentrations
0.25 pg/ml, 0.5 pg/ml, 1.0 ug/ml and 2.0yg/ml. The resultant morphology of typical small particles
precipitated from these solutions is shown in Figure 12. (In Appendix: Figures). Using such an
approach, as seen in the micrographs, it was possible to produce platelet-like polygonal particles
approximating in shape the crystalline platelets found in nacre. These experiments have been performed
for a few protein concentrations only. The precipitation experiments involving protein will be replicated

and additional vartiations in composition examined, to allow for more complete assesment of the

influence of proteins on CaCO; precipitates from solution.
IV. Future Studies

(I) Structure of Nacre
a. In-depth analysis of the microstructural features of aragonite from molluscan nacre and from
geologic sources. Classification of defect structures found in the the two respective forms of
aragonite. Comparison of microstructures.
b. Examination of the interface region between calcitic and aragonitic portions of the abalone
shell.
c. Single-crystal X-ray diffraction study of blocks of nacre and of aragonite. Comparison of
profiles from this study. Information from this sudy will give some indication of the
orientational ordering found in nacre and a comparison to alignment of crystalline grains in

geologic aragonite.

(ii) Formation of Nacre

46




(iii) Synthetic Assembly of Small Particles, Thin Films, and Nacre-like Structures

a. Growth of precipitates from solution with protein added to it. In these types of experiments,
supersaturated solutions containing Ca*’ and CO32' and specific inorganic ions at near-seawater
concentrations would be reduced. To these solutions, small amounts of organic molecules
extracted from mollusc sheil would be added. In similar manner to initial mineral growth
experiments, solubility of CaCO; would then be reduced by terminating carbonation of these
solutions. Morphology of precipitate particles generated from this process could be

characterized by SEM to determine the possible influence and control over morphology exerted

by these proteins.

b. Growth of precipitate on substrates with prepared assemblies of organic macromolecules
attachedA to them. It is possible to create regularly spaced arrays of functional molecules which
are attached to substrate surfaces. (One method to prepare such an activated substrate is to first
create an organized monolayer of organic molecules in a Langmuir apparatus, then to transfer
this monolayer to the surface of a rigid substrate, such as glass). By placing such surfaces in a
solution supersaturated with Ca" and CO,” ions, and allowing precipitation of crystalline solid
to take place on this substrate. one could explore the influence of specific species of molecules
thought to interact with ions from solutions and to moderate the transformation of these ions to
solid material. This process is suspected to take place in biomineralized growth of shells, where,
for example in nacre, aragonite tablets form on an organic matrix from fuid in the extrapallial
space. Though it may be difficult to utilize actual macromolecules extracted from mollusc
shells in such a process. due to the difficulty in isolating these and the small quantities of
organic matter available after isolation has occurred, it would be feasible to use similar

surfactant molecules with known active headgroups to produce an organized molecular assembly

for future mineral growth.
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¢. Growth of mineral particles under organized surface monolayers (Langmuir monolayers).

Additional microscopic investigation of nacre would include an attempt to explore the growing
edge of nacre at the highest resolution, through use of atomic force microscopy. Because the AFM
instrument is capable of imaging samples in a fluid medium, it could be possible to observe the inner
surface of the shell in a solution mimicking extrapallial fluid, thereby preserving or closely simulating
conditions found in the living organism. Such an experiment could provide key information about
nucleation and growth of aragonite tablets in the shell, and possibly about the role of the organic matrix
in this process. Additional TEM could be employed to examine and investigate orientation telationships
between the mineral and organic phases in nacre, by gathering diffraction data from both phases
simultaneously. Such an experiment poses significant challenges for the electron microscopist, however,
because diffraction from the organic phase is difficult to attain due to the sensitivity and instability of this
phase under electron beam irradiation. Success in this experiment would require careful and clever

treatment of the sample under the electron beam.

There remain a number of experiments involving mineral growth from aqueous solution that can
be applied when suitably isolated and prepared organic constituents (i.e., proteins and other organic
molecules) from mollusc shells are available. These experiments will begin to answer questions on the
role of organic components in the regulation of crystal particle formation in biomineralization processes.
These include:

(i) Mineral growth onto organized self-assembled supernatant monolayers of selected organic

molecules (Langmuir Films), possibly using organic molecules extracted from powdered abalone

nacre.

(ii) Mineral growth atop seed crystals, compared to mineral growth atop seed crystals whose

faces have been treated with proteins. |

(iii) Studies of protein binding to sufaces of mineral crystals, and observation of differential

absorption depending on which plane face of the crystal the proteins are attaching to.
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Quantification of surface attachment by proteins could be made through use of proteins which
have been modified by attachment of fluorescent sidegroups, and observation of the attached Py
protein surface density by a spectrophotometer.
(iv) Examination and experimentation with self-assembly of isolated components of the organic
matrix layer, in Langmuir films ®
(v) Design and construction of a more sophisticated large single-crystal growth apparatus, which would
be useful to produce regular, faceted crystals of size in the centimeter range, rather than simply observig

characteristics of small precipitate particles. With such an apparatus, one could explore the influence of °

proteins dissolved in parent solution on the morphology of growing crystals.
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Figure 4: (1) SEM Images, Particles Precipitated by Method of Wray and Daniels ( Method 1)

(2) XRD Pattern, Confirming these Particles are Aragonite
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Figure 5: (1) SEM Images, Particles Precipitated by Method
of Kinsman and Holland (#Mefhoa/ 2)
(2) XRD Pattern, Confirming these Particles are Aragonite




Composite View, TEM Bright-Field Images, Nacre from three different Molluscs
(a) Abalone
(b) Pinctada
(c) Nautilus




Figure 7: TEM Images of Defets and Microstructural Features in
Biogenic Aragonite and in Geologic
Aragonite (Microstructural Comparison)

(#1) Defect Structures Visible in High Magnification Views, Biogenic and
Geologic Aragonite

T: Twin
D: Dislocation
P: Pore




(#2) Dislocations in Geologic Aragonite




(#3) Grain Boundaries in
a. Biogenic Aragonite (v+f)
b. Geologic Aragonite (BoTToM)




(#5) Voids in Biogenic Aragonite
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‘6) Twins in Geologic Aragonite (top) and Biogenic Aragonite (bottom)




Figure 9: Photos, Precipitate from @
0:1, 1:1, 5:1, and 7.5:1 Mg:Ca Solutions

Ppt. From 1:1 Mg:Ca Solution




Ppt. From S:1 Mg:Ca Solution

Ppt. From 7.5:1 Mg:Ca Solution




Figure 10: SEM Images, Particles from Addition
of Ions Sr, K, Ba, and Li )

Addition of Sr ®

Addition of K




Addition of Ba




Figure 12: SEM Images, Particles from Solutions
with Added Abalone Proteins

Experiment #1: No Magnesium, [Ca2+] = 10 mM
Abalone Protein: 4.5 pg/ml

Experiment #2: 5:1 Mg:Ca Ratio, [Ca2+] = 10 mM
Abalone Protein: 0§ pg/ml
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Abstract

The micromechanical behavior of a biological hard tissue. a molluscan shell, was
examined with respect to its micro- and macro-structure for the purpose of
‘obtaining lessons for novel armor design. Microindentation methods were
applied to this svstem to measure mechanical properties, including,
microhardness, damage tolerance, elastic recovery, and elastic modulus. In an
effort to determine the effects that the inorganic phase has on the mechanical
behavior of the mollusc, i.e., red abalone (Haliotis rufescens) its inorganic
components, two crystallographic forms of CaCO3, were similarly tested in their
pure mineral forms. i.e., calcite and aragonite. Data are provided which
highlights the mechanical behavior of this system, and comparisons are drawn as
to illustrate this svstem's superiority in damage tolerance, haraness. and
toughness over the mineral constituents from which it is made. Ultimately, it is
suggested that the incorporation of an organic phase allows for optimal
regulation of the properties that are critical to the system's function as a natural
armor, and hence the survival of the mollusc species that produces it .
Furthermore, comparisons are made in the structure of the "biological” and
"synthetic” armors. and suggestions are made for possible improvements in the
advanced armor design.




[- INTRODUCTION AND BACKGROUND
A. Nanocomposite Materials

Technological materials are rarely used in their pure forms since their physical and
chemical properties depend primarily on their microstructures. The object in
designing and processing materials, therefore, is to tailor their properties for
specific applications through structural control. In practice, however, this control
is generally limited to a specific length scale: for example. lattice structure,
impurities and defects at the atomic scale, interface structure, precipitates and
second phase particles at the nanometer scale, grain structure, size and shape at the
micrometer scale, and finally overall architecture of the sample at the macro scale.

Recently, it was discovered that materials with controlled structural variations at
the nanometer scale exhibit unprecedented physical properties, including optical,
electronic, magnetic. and elastic characteristics. ’ Fundamental reasons for
property improvements, including the nanoscale effects are not well understood.
Although some current synthetic techniques can achieve controlled composite
microstructures in a limited extent, it is, however, still difficult to produce
materials structures with desirable interface properties and with a high degree of
control of the lattice and defect structures at the nanometer scale. In this sense
structural design is usually accomplished at a single length scale, with possible full
control, and over several scales in synthesis, with limited control. In addition,
these materials are typically processed for one particular property, such as for
certain mechanical properties. and they are rarely multifunctional for more than
two properties. In order to meet the demands of current and future technologies for
materials with superior physical properties we will need to apply new strategies for
producing components with more complex structural designs that accommodate
applications which demand multipurpose uses.

Biological systems otfer model materials strategies in structural design for
engineering applications.3_4 Biological systems are a rich source of inspiration for
design and processing concepts for developing novel synthetic materials where
structural control is established over a wide length scale. Among the many novel
features which biological materials exhibit5 is a structural design that is controlled
at a continuous length scale from molecule to final tissue in a hierarchical
manner.6-7 It is likely that it is this continuum of structural design organisms, in




many cases, which provides the biological material with its multifunctional
characteristics.

One example of such a material is molluscan, or conchiolin shell.8-10 The
molluscan shell are secreted by a variety of gastropods, cephalopods, and bivalves,
including, Haliotis rufescens (red abalone), Nautilus pompelius (nautilus), and,
Pinctada margaritafera (pearls oyster), respectively, and primarily function as a
defense from environmental factors including natural predators. I-12 A predatorial
attack typically comes in the form of an attempted compressive overload of the
shell, and thus high toughness and damage tolerance, in addition to hard surface,
are critical for the gastropods survival. Recent measurements indicated the
exceptionally high toughness of some biological hard tissues, including mollusc
shell.13 For example, the nacre section of abalone and pinctada shells display
fracture toughness (4-point bend) values of bout 12 and 16 MPa-mi/2.13 Certain
mechanisms, in particular platelet sliding and ligament formation, have been
identified by which this material is able to achieve high toughness behavior.10.13,14
While this finding is at least intriguing, it should not be surprising, as there are
many examples of survival driven behavioral evolution in nature.10 It is important
to note that, like modern synthetic composites, it is ultimately the structural design
which allows for the development of critical behavior defining mechanisms within
the biological material. Here, exceptional mechanical behavior is the result of a
highly ordered hierarchical structure. This structure allows for the optimal
mechanical contribution of each phase within the composite region. While this
approach has been the basis for synthetic composite design it has not been fully
realized in industrial applications. 1307 The application of hierarchical,
continuously controlled structures, to synthetic composite design, will significantly
enhance the quality and usefulness of these materials.

While there has been some investigation into the mechanisms operative in
toughening of molluscan nacre structure, the development of a thorough
understanding of the overall sgfstem in terms of their various mechanical functions
remains to be accomplished.1 14 The questions that must be addressed center
around not only how the structure is able to provide the critical mechanical
behavior, but how is the creature able to produce the material (i.e., mollusc shell)
itself as a system, including all the inorganic and organic phases, their two- and




. . . . 10 . . .
three-dimensional morphology, and microarchitecture. ~ It is the goal of this
research to address the first issue and, in doing so, contribute to the understanding
of, and application possibilities that lie within the molluscan structural design.

B. Structure of the Mollusc Shell

Red abalone shell can be thought of as a two ply composite material (Fig. 1).9’10
The two distinct regions or "plys", although having similar elemental
compositions, i.e., Ca, C, and O, have quite dissimilar structural characteristics.
The outer region is called” prismatic (Figure b, d, e, f, and h), while the inner
region is referred to as nacreous (Fig. 1 a, b, ¢, f, and g)). Both regions contain
inorganic CaCO3 as the crystal filler particles which are housed in a matrix largely
containing proteins and polysaccharides. 15,16 The micro- and nano-structural
elements of each region are significantly different, the most obvious distinction
being the morphological and crystallographic form of the CaCO3 crystallito:s.10

The prismatic region is constructed in a manner similar to a unidirectional short

fiber reinforced synthetic composite. v Single crystals of calcite (rhombohedral
CaCO3, R3m) are, for the most part, aligned in the <100> crystal dlrectlon and
bonded together by a thin organic matrix layer (Fig. 1b, d, f, g, and 1 )) These
crystals are approximately 1-2 pum in [100] direction and 1- 20 um in length in
[001] (or [010]) direction, thus have an aspect ratio of approximately 10:1. The
columnar calcite crystals are aligned along the axis normal to the shell surface
(Figures 1 and 2), but are staggered in the (curved) plane of the shell to form
stacked layers, which are bound on all sides by a thin (few nm thick) layer of
matrix. In this sense the prismatic region is similar to a multiple ply unidirectional
short fiber composite, 17 having approximately 1-2 vol. % matrix, where all plies
are oriented in the same direction.!8

In contrast, the nacreous section of the shell contains twinned pseudohexa&onal-
shaped single-crystal aragonite platelets (orthorhombic CaCO3; Pmmm).  The
platelets are approximately 0.25 wm thick along [001] direction and 2-10 um 1n
edge-length along [110] axis of the orthorhombic cell (Fig. lb, c, e, g, and h)
Therefore, the aspect ratio of the individual aragonite platelet is 0.1 (ration of the




length in the c-axis to the length along a- (or b-) axis. The organic matrix is in the
form of a fairly uniform, about 100 A-thick, film that surrounds the aragonite

platelets. The organic matrix itself is a composite material containing proteins,
: : ... 10,20 . .
polysaccharides, and possibly phospholipids. The microarchitecture of the

nacreous region, therefore, is a brick-mortar structure, where the or§anic
component (mortar) acts to bind the inorganic aragonite bricks.g’lo' 4 The volume
of the matrix in nacre is considerable greater at approximately 2-5%.21-23 Both the
prismatic and nacreous structures can be seen in Figures 1 and 2 which highlights
the locations of these sections in the shell and their detailed microstructure,
including the SEM and TEM images (Figures 1g and h/i respectively).

The molluscan shell design, therefore, is highly spatially ordered over a wide range
of dimensions: two different mineralogies at the molecular scale (calcite and
aragonite), substructural variations and lattice defects at the nanometer scale,
crystallite particle size and shape (columnar or platelet) at the micro-meter scale,
composite structures (alignment, vol. % filler), and finally two-ply composite
design (prismatic and nacreous sections) at the macroscale.

C. Ceramic Armor Design

Throughout history armor systems have been designed to protect men, as well as
their belongings. Traditional armor was typically made of steel, e.g., in the form of
steel chainmail until the introduction of plate armor in the 15th century. A
standard plate armor suit was used for both combat and sport, weighed
approximately 50 1b., and was made of a variety of steel and iron parts.24 At the
beginning of this century, as projectiles and explosives became standard warfare
tactics armor design shifted toward large bulky ceramic structures. Concrete and
cement were used for the construction of fixed emplacements to provide protection
for troops and vehicles against bullets and explosive blast fragments. The utility of
such an armor, however, is limited to cases of fixed defense, where there 1S NO
weight penalty to the individual soldier. In order to broaden the applications of
ceramic armors, designers were forced to incorporate weight and mobility
considerations, and ultimately produced armors which married the two previous
design philosophies. In the new era, after World War I, a hard enamel coating was




applied to a metal substrate in the armor design improving the resulting resistance
to impact,25 thus began the development of composite armor systems. These
materials, like all composites, are created with the intention of capturing the
beneficial, and, at the same time, restricting the detrimental aspects of each of the
constituents from which it is made. For example, during the World War II, it was
shown that a material combining plate glass and polymer encased Doron (ceramic)
was much more effective in stopping projectiles than either material alone.26-27
The progression from this basic composite macrostructure to modern ceramic
composite microstructures has been an important trend in the development of
armor and non-armor materials, until to the present time. In a relatively recent
two-tier modern ceramic composite armor design (Figure 3), ceramic is the face
material with multilayer laminate resin impregnated glass fabric as the backing
material.28 Now it appears that the ceramic faced armor system has been well
established, however much work remains in the development of materials micro-
and nanostructures which provide superior contributions to this, now, traditional
armor system.

Within the composite system, broad armor beneficial properties are sought: low
weight, high resistance to penetration, and high damage tolerance. Each region
within the comgosite, however, has a specific function, with specific behavioral
requirements.2 The ceramic facing is naturally stiff, brittle, hard, and strong in
compression. The principle employed in the selection of the ceramic face material
is that defeat of an armor piercing projectile depends on: overwhelming the
hardness of the projectile, sound wave velocity (proportional to the square root of
the modulus over the density), and establishment of a minimum thickness required

to gain a particular geometric stiffness.”  In order to be effective, the outer
ceramic layer must destroy the integrity of the projectile as it penetrates this region.
This is accomplished by the deformation of the projectile such that it has a larger
surface area in contact with the ceramic, therefore disseminating the projectile
energy more rapidly. It is due to the large compressive yield strength of the
ceramic that this is possible. With this in mind, examination of variety of existing

ceramics for materials lead boron carbic31f: as the leading ceramic choice, followed
) - ) 0
by alumina AD 85, and silicon carbide.




7

The backing material used in the composite armor system must be able to hold the
ceramic facing in place throughout its pulverization stage, as well as expend the
incident energy presented by the projectile after it has encountered the hard outer
Iayer.3o Several mechanisms in the backing region which permit this may be:
grain boundary bridging, particulate-matrix shear, ligamentation, crack bridging,
and delamination of multiple bonded layers. The materials used in this region of
the composite have included ductile monolithic metals such as aluminum, as well
as polymer reinforced ceramic fabrics.?'1 In the case of the later it is believed that
the presence of more layers provides greater number of surfaces available for
delamination, and therefore more energy is expended. In addition, the bonding
characteristics presented by the matrix and filler is critical in the case of laminate
backings. Extremely strong bonding will not allow shearing to occur between the
matrix and filler particles, while poor bonding does not allow for the material to
utilize the high strength and stiffness of the filler particles, so a compromise is
reached between the two conditions.

As it is clear, the microarchitectural design in the molluscan shell presents an
interesting example of a ceramic faced armor system. First of all, both the face and
the backing materials are mainly ceramic. Also, in the mollusc shell, unlike the
traditional systems seen thus far, the ceramic facing is not a monolithic material,
Like the multilayered laminate backing materials used in many engiveering armors,
<0 are both the calcitic facing and the aragonitic backing materials. The
microstructural design of these materials has been demonstrated, now what remains
to be shown is how each tegion accomplishes its specific requirements in attaining
successful armor design. -

D. Experimental Approach

Microindentation hardness tests were performed on the molluscan and geological
component materials systems to explain the mechanical behavior, as well as gain
better understanding of the influence of the inorganic component on the over
functionality of the armor system. The samples with each morphology (prismatic,
nacreous, geological calcite, geological aragonite) was tested on two growth
planes, the (001) and (001), (@ for normal direction),using two indentation
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geometries, 1.e., Vickers and Knoop. These tests were limited to the micro-scale,
thus providing information which can be used to distinguish the prismatic
composite behavior from that of the nacreous composite behavior. This scale of
testing allows segregation of shell information into prismatic and nacre groups,
while having no effect on the testing of the geological samples. In this manner
comparisons in different behavior can be drawn between the biogenic regions
themselves, in addition to those drawn between the mineral and biological forms of
CaCO;. By following this approach we illustrate not only the relative variation in
micromechanical behavior between the geological and biogenic morphologies, but
also the functionally gradient nature of the molluscan desi%le; 1.e., mechanical

properties vary from one region of the material to another.

[- EXPERIMENTAL PROCEDURES
A.  Background

In this work, microindentation methods have been applied to both mollusc shell
and geological CaCO3. Both the Vickers and Knoop type indenters were used in
order to determine in each sample: (i) microhardness, (ii) elastic recovery
parameter, and (ii1) relative elastic modulus. Small samples were cut 1n two
crystallographic orientations [(001) and (001),,.ma] @nd polished to a 0.05 um
surface finish. All samples were tested on a Shimatzu Type M Microindenter with
2 0.017 mmy/s loading rate. and 0.5 wm measurement resolution.

At this point a brief review of factors which affect hardness/stiffness is in order.
Because of the multi-layered composite nature, hardness and stiffness, as measured
on the micro-scale, are the result of both crystallite lattice and defect structures as
well as microstructural features which span the hierarchical design of this
biological material. Some of these factors are intrinsically derived from the
individual phases present and some are extrinsically resolved via structural design.
In a study such as this, the micro-scale values must be considered in light of
several additive contributions at different spatial levels. On the crystalline level it
has been noted that the geological form of aragonitic CaCOj is about 20% harder
than that of calcite counterpart.33 Although this is generally accepted, however,
one must also take into account the crystallite defect structure as well as the extent




of any inclusions within the grains, such as precipitates and second phase
particles.34 In addition to these substructural characteristics, attributes such as
grain size and shape, and alignment must be considered as well. As noted in
metals, refinement of grains typically leads to harder and stronger, but less tough
material35 In addition, in the case of synthetic composite materials, such as fiber-
reinforced ceramics, materials exhibit greater stiffness when highly aligned in the
incident force direction.!” In relation to mollusc shell design, all of these factors
are present in determining the composite properties of hardness and stiffness;
pseudohexagonally twinned aragonitic platelets in the nacreous region, highly-
aligned prismatic columnar structure of calcite in the prismatic region, the presence
of micron-scale crystallites, and two forms of calcium carbonate. All are not
equally responsible for the micro-scale behavior, but all must be considered none
the less.

B. Vickers Microindentation

These experiments were originally designed to simply determine the microhardness
variation of the two regions in the mollusc shell, and compare them with those
obtained for the mineral calcium carbonate counterparts. For this reason the
Vickers indenter was selected. Because of the Vickers indenter symmetry, the
testing procedure is simplified, however, the extent of quantitative information that
can be obtained from this test is minimal (i.e. limited to microhardness values
only). Each sample was repeatedly tested under a variety of loads in order to asses
the load-size effect which is commonly referred to in static indentation
experiments.36 The load-size effect for biological calcium carbonate is not
elaborated in this paper but is left for future work. This analysis allowed for the
selection of an appropriate load, such that microhardness values obtained would be
as close to the nominal values as possible. As such, a load of 50 gms. was selected
and used in all subsequent tests.

Experiments were thus performed on four materials, in two crystallographic planes
for each material, both in the c direction (i.e., [001] and [100] in calcitic samples,
and [001] and [100] or [110] in aragonitic samples) This was done because of the
inherent anisotropy found within the biological samples of calcium carbonate, in
both nacreous and prismatic regions. Mineral samples were tested with respect to
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their obvious crystallography (Figure 4), while biogenic samples were tested with
respect to the crystallography of the calcium carbonate crystals within them
(Figures 1 and 2).

The microhardness values obtained via Vickers indenter were calculated using the

equation:37-39
Hvz(’1854.4*P)/d2 (D)

Where, H,, (Kg/mm2) is the Vickers hardness, P (gm)is the load, and d (im) is the

distance.

C. Knoop Microindentation

In an effort to broaden the amount of information obtainable via the
microindentation method, a Knoop indenter was applied to these experiments. As
previously described, the use of a Knoop indenter should allow for the
quantification of various mechanical properties, elastic and otherwise. As applied
to the study of biological composite damage mechanics, elastic recovery behavior
and relative elastic moduli are of primary interest.

The starting point for the formulation of the damage characteristics for a brittle
system such as mollusc shell is the characterization of the elastic-plastic stress
field. Looking at the variation of indenter load, P, with penetration depth, z, the
functional relations for the two half cycles (loading and unloading) are defined as

follows:40
PuHz (loading) | (2)
PUE (22 -2.2) (unloading) 3)

Where z_ is the residual indentation depth, and E is elastic modulus. From these

relations the following result can be obtained33:

(z/z,)% = | - W (H/E) 4
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It can now be seen that the parameter H/E plays an important role in the
characterization of the elastic-plastic field surrounding the indentation.

As previously described, measurements of the elastic recovery at hardness
indentations are of interest because of the description they provide regarding the
division of energy into reversible and non-recoverable components. In addition,
such measurements can also be used in the calculation of Young’'s modulus on the
microscopic scale. As outlined, the parameter of interest is the hardness to
modulus ratio H/E. One way of quantifying this parameter is to monitor the load
as a function of penetration depth, as prescribed by Eqn. (3). Because this
approach requires technology uncommon to most indentation equipment it is not
preferred. Another method is to make use of the asymmetric nature of the Knoop
microindenter geometry. As such, there exists a length ratio of 1:7.11 between the
short and long diagonals of the Knoop indenter.

While the longer diagonal is relatively insensitive to elastic “‘springback” effect,
the shorter one diagonal is not. In this manner one is able to use the long direction
as a rule, while monitoring the change in the distance of the indentation diagonal.
Such an analysis yields the equation:39:40

b’/a’ = b/a - UH/E - (5)

Notice that b/a is the nominal diagonal ratio 1/7.11, b’/a’ is the ratio of indentation
diagonals, and [ is a constant equal to 0.45 for Knoop geometry. Now it can be
seen that materials with relatively rigid structures (high H/E) will exhibit greater
lateral recovery.

This approach was used for microindentation of both biogenic and geological
CaCO; materials. Microindentation experiments were performed on both nacreous
and prismatic mollusc shell, as well as mineral aragonite and calcite, as described
above. Microhardness, damage zone size, elastic recovery, and elastic modulus
were calculated. It should also be noted that the equation used in determining the
Knoop microhardness is similar to that of Vickers.
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III- ANALYSIS OF THE RESULTS AND DISCUSSION
A. Microhardness Results

As can be seen in both Figures 5 and 6, and Tables-I and -1I, the results of both
Vickers and Knoop microhardness experiments are, for the most part,
complimentary. In both cases, and on both test planes, the geological aragonite is
hardest, followed by the prismatic calcite, nacreous aragonite, and finally
geological calcite. While the actual microhardness values are of interest the most
significant result of these particular experiments is noticed in examination of the
relative hardness trends followed by the materials. In particular, while the biogenic
form of calcite (prismatic) shows an increase in microhardness of approx. 30%, the
biogenic form of aragonite (nacre) yields a reduction of microhardness by
approximately the same amount. The significant implication is that a simple rule
of mixtures, which accounts for the additive behavior of volumetric compositions,
is not adequate in describing the microhardness behavior. While both biological
compositions contain a measurable quantity of soft organic matrix, the effect in one
is opposite of that in the other. The explanation of such behavior must then
encompass microstructural design.

In the case of prismatic calcite, the columnar design, in addition to a high level of
alignment of crystallites, with an aspect ratio of 10:1, allows the material to be
significantly more resistive to penetration (compared to the geological calcite with
an aspect ratio of 1:1). The crystallites are, in this case, oriented axially toward the
incident force (Figures 1 and 2). This alignment, in conjunction with a minimal
amount of organic binder, severely limits the plastic deformation possible in the
system. In this fashion, the columnar crystals are able to accommodate the
majority of stress, thus limiting the corresponding strain, as in the case of a
uniaxial short fiber composite.

Nacre, on the other hand, with its textured platelet-lamellar configuration,
accommodates most of the penetration force via plastic absorption of the impacting
energy. Compared to the aspect ratio, i.e., more than 10:1, of the pseudohexagonal
geological rode-like aragonite crystals (Figure 4), the aspect ration of the
individual aragonite platelets in the nacre is 0.1. This low aspect ratio and a higher
volume of plastic binder, in conjunction with the brick and mortar
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microarchitecture, allow for the distribution of stress and strain across the layered
structure throughout nacre on the a-b plane, perpendicular to the applied stress in
the c-direction. This phenomenon occurs via platelet shear motion (sliding),13.15
and platelet compression in the direction normal to the incident force. Ultimately
this can bee seen as shear motion between nacreous layers, with accompanying
platelet and matrix compression in the direction normal to the incident force (as in
the case of (001) penetration), or lamella debonding (accompanied by crack-
bridging)!3.15 in conjunction with compression across nacreous layers, in the case
of (001), penetration.

B. Elastic Recovery and Modulus

Microelastic recovery behavior has been described in terms of a dimensionless
parameter b’/a’. This variable illustrates the amount of elastic “springback” in the
long diagonal direction of the Knoop indenter, thus providing some information on
the extent to which the energy absorbed by the material is reversible. If a material
is capable of a high degree of elastic recovery then this material will be less
susceptible to plastic overload, as a significant portion of energy, which would
otherwise cause plastic deformation, is temporarily alleviated within the stress
region. The results of microelastic recovery calculations can be seen in Figure 7,
keeping in mind that greater elastic absorption capability is represented by a
smaller recovery parameter.

The illustrative trend in this data is that the biological morphologies (the hard
tissues) have consistently greater elastic recovery capabilities, mainly because of
the presence of macromolecular component in the composite (this is also true in
bone).5 Prismatic calcite shows an increase in elastic recovery of approximately
10%, while that seen in nacreous aragonite is approximately 25% in (001) and 10%
in (001),. This result is not surprising, as these materials are composed of a noted
quantity of elastic organic matrix binder. This binder, provides a mechanism for
elastic energy absorption and recovery, namely matrix ligament formation. Recall
that the volume of matrix is similar in both test planes in the prismatic structure,
but in the nacreous structure the matrix thickness is approximately double in the
(001) plane. This leads to the similarity of results, by plane tested, as seen in
prismatic samples, as well as the dissimilarity noticed in the nacre samples.
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It has been recently noted that fine ligaments form within strained matrix volumes,
which act to bridge, or connect two regions within the material, thus preventing
permanent separation. 13 Such a mechanism ultimately leads to the preservation of
structural integrity within the material after the plastic absorption of any remaining
energy is accomplished.

In addition to ligament formation, the presence of elastic matrix, in the spirit of the
“rule of mixtures”,!7 significantly contributes to the materials ability to elastically
compress. In the case of a pure mineral, compression capabilities are severely
limited. Plastic deformation results, and can be seen in the form of slip plane
generation. As the mineral itself has a very high modulus, and with no soft
component present, deformation requires much greater energy absorption than does
crystallographic cleavage. The result is very little elastic compression of the
stressed region. The biogenic sample, on the other hand, contains the small, but
critical, soft component volume. When stressed this component readily elastically
compresses, thus absorbing energy, and alleviating compressive stress which
would be borne by the inorganic component.

The determination of microelastic modulus using the Knoop indentation method
follows from the elastic recovery approach. Using the measured values of Knoop
microhardness, in conjunction with the recovery parameter equation, we are able to
calculate a value for elastic modulus. Again, the illustrative trend is the
comparison of geological behavior to that of the biological counterpart. In
accordance with the results of the elastic recovery, we see a reduction in modulus
in both of the biogenic morphologies. Figure 8 shows the microelastic modulus
results. Prismatic calcite exhibits a reduction in modulus of approx. 30% over the
mineral form (in both planes tested), while nacreous aragonite is 90% more
compliant in the (001), and 60% more compliant in the (001);. The compliance
trend is again similar to that of elastic recovery, as the mechanisms represented are
equal. Elastic recovery and moduli data can be seen in Tables-III and -IV.



15
C. Damage Tolerance

The extent of damage within the materials has been characterized by measuring the
apparent area of damage zone on the face of each sample tested. In this manner a
qualitative basis is established which allows for the comparative analysis of each
system. Micrographs were used in the modeling of damage zones and
measurement of zone sizes for each sample. A small area of apparent damage
within the material was said to characterize high damage tolerance, whereas a
material exhibiting a large damage zone was considered damage intolerant.

Images in Figures 9(a through d) show Knoop indentations by which damage zone
sizes were calculated. Once again, the biological CaCO5 morphologies exhibit a
significantly reduced damage zone than those found in the geological materials. In
each case the damage zone was modeled as a simple two dimensional geometric
shape, whereby zone size is calculated as area.

In the case of geological calcite the damage zone appears to consist of a highly
dense region of local cleavage planes, roughly in the shape of a right triangle
(Figure 9c). Prismatic calcite zones, on the other hand, were modeled as isosceles
triangles which exhibit local cracking to one side of the indentation (Figure 9d).
Among these samples the prismatic structure displays a reduction of damage zone
size of approximately 70%. The results are similar for both test planes.

The geological aragonite zones were modeled as semi-circular regions of local
cleavage, which again emanated from one side of the indentation (Figure 9a). The
nacreous aragonite samples show quite different damage zone characteristics
depending on plane tested, and were treated accordingly (Figure 9b). On the (001)
test plane the damage zone appeared as a plastically “piled” area that could be seen
on both sides of the indentation. This type of feature is similar to a typical outflow
of material near the edges of an indentation in a plastic material such as a metal.
Each of these areas was modeled as an isosceles triangle and added to yield the
total zone size, which as compared to mineral aragonite shows a reduction of 50%.
On the (001),, test plane there is a remarkable deficiency of damage characteristics
in the vicinity of the indentations. No measurable damage zone could be seen in
this case. This strongly suggests that nearly all the indentation energy is absorbed
plastically within the matrix, and the extent of crack formation is minimal, and
limited to the formation of numerous small, stable, microcracks at the
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platelet/matrix interface.10.13.15 Furthermore, the damage zone is accompanied by
the delamination of the aragonite platelets from the organic layer to allow the
creation of new surfaces thereby disseminating the applied load via this energy
absorption mechanism.

V- CONCLUDING REMARKS AND NEW DESIGN PARAMETERS
A. Conclusions from this Work

We have shown that Haliotis rufescens mollusc shell is naturally designed as to
optimize qualities of a biological armor. While both the prismatic and nacreous
regions of the shell are composed of the same inorganic filler (CaCO3), and similar
organic matrix (albeit different amounts), they exhibit distinctly different
mechanical behavior. On one hand, the outer prismatic region is stiff and hard. It
absorbs a great deal of incident energy via crystallite compression and localized
brittle fracture. The extent of damage caused by this fracture is severely limited by
the highly aligned columnar design. The size, shape, and alignment of the
crystallites restricts crack propagation to the immediate area of impact by
presenting organized discontinuities within the lamella. Nacre, on the other hand,
is a softer and has much more compliant microarchitecture. The low aspect ratio
“brick and mortar” design, in addition to a significant volume of soft binder, allows
for a large extent of elastic, as well as non-catastrophic plastic deformation within
the indentation region. Elastic energy absorption is accomplished via matrix
compression, both normal to and in the direction of the incident force, and
macromolecular extension via ligament formation . Remaining energy can be
plastically absorbed by the matrix via typical shearing processes within a soft
component, i.e., sliding of the aragonite platelets over the interlamellar organic
film. In this region little stress is borne by the inorganic platelets and an extended
tortuous crack path develops which is restricted to the local indentation area.

The main limitation of this research is the inability to directly quantify the
contributions made by each component within the nacreous and prismatic regions
(e.g., contributions by the individual aragonite platelets and the organic matrix).
Although our approach has yielded significant evidence as to the influence of the
organic component on micromechanical behavior, the quantification of hardness
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and elastic properties over the sub-micron scale would prove invaluable. This
approach requires application of currently developing mechanical techniques, such
as atomic force microscopy nanoindentation. We are in the process of currently
developing such an approach, and preliminary analysis has been conducted in our
labs using a Digital Instruments Nanoscope III. There are many issues still to be
considered and a variety of nanoindentation techniques to be investigated before
such work can be successfully completed.

B. A Novel Armor Design: Lessons From Biology

Our results imply, and provide, several novel ideas in the design of new armor and
impact resistance materials (as also depicted in Figure 10):

o- Both the face region and the backing region can be made of components with
high ceramic-content (being more than 90%! as demonstrated in this case). This is
a significant deviation from the traditional design in which, usually, the face region
is monolithic (or tiled, hard for projectile stoppage) ceramic and the backing region
is metal or polymer, or in more recent designs, high-percentage soft-component
containing composite (for energy absorption through plastic deformation). In
addition to the beneficial mechanical properties, the use of ceramics on both
regions effectively decreases the overall weight of the armor material, and satisfies
one of the important requirements in achieving light-weight armor system.

o- Microarchitectural design is accomplished in both of the regions in the two-
ply structure in the biological composite to modify their properties so as to tailor
the overall micromechanics of the system as a whole. As illustrated in this work,
although the hardness of geological aragonite is higher than that of geological
calcite, the prismatic region, mainly because of the columnar organization of the
calcite crystallites, has significantly higher hardness value than the nacreous
region, in which the aragonite crystallites are organized in the form of thin platelets
separated by the organic matrix to provide the higher toughness and the damage
tolerance for better energy absorption. The final structure appears as an excellent
example of a design of functionally-gradient material (now a device) as expected
for an ideal impact resistant material.




o- Synthesis of the component systems in mollusc shell structures is
accomplished at room temperature in aqueous environments via self-assembly,
using the raw materials widely present in nature. This is a major drastic difference
between man-made and natural systems. In making traditional engineering
materials, microstructures are developed through complex processing strategies at
several separate stages that often involve thermo-mechanical treatments, followed
by shaping and machining, all energy absorption techniques. Furthermore, in most
traditional systems, multi-component structures, such as ceramic-metal or ceramic-
polymer composites, are developed through forced-assembly, e.g., mechanical
alloying or layering, or via extensive interface reactions as these components are
not phase compatible. In the biological systems, however, the materials structures,
involving both organic and inorganic components, are developed via self-assembly,
often by using significantly small amount of organic macromolecules (that are
more expensive to synthesize in terms of energy used). It is the organic
macromolecules, including DNA, proteins, polysaccharides, and phospholipids,
that act as template, nucleator, growth modifier, or enzyme controller, under the
genetic code of the organism, that is responsible for assembly of highly ordered
hierarchical composite structures with multifunctional properties.

o- The mollusc shell need not be bulky (voluminous) and heavy, unlike in
modern armor and impact resistant materials. The same architectural design of the
mollusc shell, calcitic on the outside and nacreous on the inside, is prevalent in
many different mollusk species (nautilus, abalone, and bivalves) that live in
significantly different habitats and, hence, exposed to different external forces
(water pressure) and predators.#142 In all these molluscan species, the individual
morphology and the size of the ceramic components are similar in both regions of
the shell, i.e., calcitic columnar structure in the prismatic region and the aragonitic
platelet structure in the nacreous region, although the overall thickness of the shell
may vary from one species to another (1 mm in nautilus and 1 cm thick in
abalone). It is this very versatility of the individual and overall microstructural
design that most likely allowed these species to survive, and do very well, since the
creation of mollusks more that 500 million years ago before the Precambrian!

How these structures are constructed, at room temperature in aqueous
environments, including the collection of raw materials (inorganic ions) and their
self- and co-assembly with the organic macromolecules, their nucleation, growth,
shape formation, hierarchical architecture, and, finally, creation of the functionally-
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gradient material as a system should be, and is, an intense area of investigation for
the purpose of learning, more, from nature to design, synthesize, assemble, and
process new, and novel, engineering materials.
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FIGURE CAPTIONS:

Figure 1 - Microstructure of Red Abalone. (a) The mollusc (b) and (c) The
platelet and columnar morphologies of biogenic aragonite and calcite,
respectively; (d) and (e) are nacreous and prismatic sections of the shell,
respectively. (f) Secondary electron image (scanning electron
microscopy) of a fractured surface of the shell exposing both the
prismatic (PR) and nacreous (NR) sections of the shell. (g) and (f) are
transmission electron microscopy bright field images of the reveal the
laminated and columnar structures of the nacreous and prismatic portions
of the shell, respectively.

Figure 2 -

Figure 3 -

Figure 4 -

Figure 5 -
Figure 6 -
Figure 7 -
Figure 8 -

Figure 9 -

Figure 10 -

Schematic illustration of the prismatic and nacreous sections of red
abalone shell indicate the overall dimensions of the sections and the
orientations of the crystallites with respect to the surfaces of the shell.

Schematic illustration of common armor design showing the face-
ceramic and the backing material.

Commonly encountered geological morphologies of geological
aragonite (a) and calcite (b) crystals.

Vickers microhardness of various CaCO3-materials.

Knoop microhardness of various CaCO3-materials.

Elastic recovery of various CaCO3-materials.

Elastic modulus of various CaCO3-materials.

SEM secondary electron images of the Knoop indentations in (a)
geological calcite, (b) biogenic calcite, (¢) geological aragonite, d)

biogenic aragonite.

Bioinspired design of an ideal armor material.
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Construction of a Mineralization Apparatus
Senior Project

MSE 499
by Demetriah Webster
Mehmet Sarikaya

October 25, 1995

Abstract:

A mineralization apparatus was constructed to precipitate a calcium carbonate solution for
seeded crystal growth. The apparatus includes features such as pH and temperature
control, and solution circulation. A red dye test was performed to confirm that the
solution flowed in the desired pattern through the tubing of the apparatus. The
temperature change in the solution necessary for precipitation was successful using the
constructed water cooler. Temperature and pH control devices are functional but could
be more accurate by using a laboratory heater and a pH/temperature meter probe and a

water bath.




Introduction:

Crystal growth is a complicated yet common biological process that occurs in
nature. Evidence of these processes were found in ceramic-organic composites such a.s
the nacre structure, or mother of pearl, where two structural forms of calcium carboﬁate
were observed®. In order to understand how this biological process occurs, attempts to
replicate them are performed in the laboratory.

Crystal growth of calcite and aragonite crystals is replicated by means of
precipitation of a calcium bicarbonate solution. It occurs when a solution is
supersaturated due to many physical or chemical changes to the solution. These changes
may be in heat, pH, and/or the addition of ions to the solution. Raising the pH?® and
lowering the temperature! of the solution will cause precipitation. Adding ions to the
solution will assist or hinder the growth of the crystal such as calcium, strontium?®, and
magnesium?®. The apparatus built in this project was designed to research the effects of
precipitation and crystal growth using under specific temperatures, pH levels, and
concentrations of additional solutions. The specific objective of this apparatus is to

precipitate a calcium carbonate solid from an aqueous solution.

As this precipitation occurs, several reactions take place in the solution. First,

carbon dioxide (CO,) gas is bubbled into distilled water with a semi-permeable bag of
calcium carbonate crystals®,

CO, + H,0 - H,COs
the carbon dioxide reacts with water yielding carbonic acid (H2C03). The next reaction is
the dissociation of carbonic acid:

H,CO; —» H" + HCO3'
Each carbonic acid molecule donates a hydrogen ion to the solution yielding hydrogen
carbonate (HCO5') ions. Next, the hydrogen carbonate molecule

HCO; & H' + CO5™




dissociates leaving carbonate ions to react with the dissolving calcium carbonate crystals.
This interaction yields the desired calcium bicarbonate solution.

Ca? + HCOy () = CaCO; ¢, + H* ().

* (aq)
At this point, pH is important and must be neutral in order to mimic the saltwater
environment where calcium carbonate crystals nucleate and grow in nature. Once its
maximum solubility is reached, precipitation of calcium carbonate occurs. Solutions such
as calcium chloride (CaCl,), magnesium chloride (MgCl,), and strontium chloride (SrCl))
salts, contents found in skeletons of marine organisms>$, are added to the calcium
carbonate solution to further mimic the natural process. Varying the amounts of these

added salts can effect the resulting lattice structure of the crystal.

Materials and Methods:

The resulting apparatus constructed is a cross between the U-tube Method by
Kruger and Finke, and its updated version invented by Valeton!. It has the following
features: temperature and pH control, a CO, gas connection, and solution circulation.
Solution circulation is also necessary for temperature control and for uniform crystal
growth!. Because glass can react with the solution?, acrylic tubing was used to construct
the vessels in this experiment.

The apparatus has four chambers, two of which are reservoirs for temperature
control, and two are vessels that contain the calcium carbonate solution (see Appendix,
Figure 1). The large reservoirs will keep the temperature constant to avoid evaporationl.
The two horizontal tubes allow the solution to circulate through both vessels.

The water cooler on the bottom horizontal tube cools the solution is it travels from
the secondary vessel to the primary vessel. This drop in temperature causes precipitation.
The water cooler has two barb fittings that are connected to plastic tubing creating a
circuit through which water is circulated. A water pump and the connected plastic tubing

are submersed in a cooler of ice water to cool the passing solution (see Appendix, Figure




2). To constantly monitor the temperature of the cooled solution, a hole was drilled in the
cap of the primary vessel for a thermometer.

Another hole was drilled through the cap of the primary vessel to create a
connection for continuous bubbling of carbon dioxide in the solution as mentioned in the
previous section.

Constant circulation is required for uniformity of crystal growth. The 60 RPM
motor and the attached propeller in the primary vessel pull the precipitated solution up to
continue the circulation cycle to the secondary vessel. The speed of the motor is slow so
that the solution can circulate without agitating the seed crystal.

A seed crystal can be placed at the bottom of the primary vessel were the crystal
growth will take place. The precipitated solution will flow into the primary vessel so that
crystal growth can occur. A semi-permeable sack can be placed through the top of the
secondary vessel to provide the additional ions needed for the precipitation of the solution.

The pH tester was purchased to test the pH of the solution. Samples of the
solution must be removed with a pipette through the third drilled hole in the primary
vessel and placed into a vile for testing. The detection solution is added and the color of
the new solution determines the pH. Samples of water with a minute amount of vinegar
were used to test this device. To test the circulation of the apparatus, the vessels were
filled with water and red dye was placed into the secondary vessel after the motor was
started. The performance of the water cooler was then tested by placing thermometers

into both vessels for 1 minute during circulation.




Results:

The following figures are schematic drawings of the constructed apparatus:
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Figure 1: Mineralization apparatus with arrows indicating the direction of flow. a)- b) temperature reservoirs, c)
water cooler, d) primary vessel, ¢) secondary vessel, f) motor and attached propeller, g) CO connection leading to
source, h) temperature, i) pipette for pH testing, j) bag of CaCO, crystals, k) seed crystal.

DDQ

Figure 2: A simplified schematic of the water-cooling system with arrows indicating the direction of flow. c) water
cooler, 1) plastic tubing, m) water pump, n) cooler filled with cold water and ice.




The circulation forced the red dye through the bottom vertical tube from the
secondary vessel into the primary vessel and up through the top vertical tube. The color
of the solution showed that the pH of the solution is acidic.

Discussion:

The red dye experiment demonstrates the apparatus's ability to circulate the
solution. The settling of the dye in the secondary vessel occurs because the solution in
this area falls out of the circulation cycle; the location of the vertical tubing is too high for
the solution to flow into the tubing. This is unfortunate but this settling is a trade-off for
increased agitation to the seed crystal due to the force of the circulating solution. The
temperature and pH control are useful, but a more accurate method for measuring these
two parameters would make successful precipitation repeatable. I suggest investing in a
pH/ temperature meter and a laboratory heater to maintain constant monitoring of the
solution's and the crystal's environmental conditions.

Although differential temperature control was achieved with this apparatus, there
is no method for keeping the reservoirs at a constant temperature. Placing the entire

apparatus in a temperature-controlled water bath would solve this problem.

The apparatus constructed successfully provides a controlled environment for precipitation
and crystal growth of calcium carbonate crystals. The pH and temperature control
features are functional but methods could be used for more accurate control of the
conditions. The flow pattern of red dye test shows that the circulation system works
properly. The water cooler successfully cools the passing solution in order for

precipitation to occur, but a water bath with temperature control is recommended for

constant temperature environment.
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Abstract: Atomic Force Microscopy (AFM) was used an extension of previous
Biomimetics research to observe the biological aragonite formed in Red Abalone
(Haliotis rufescens), Black lipped Pearl Oyster (Pinctada margaritifera) and
Nautilus (Nautilus pompilius) shells and to compare these nacreous formations
to the structures found in geological calcite and aragonite. Previous images of
the structures have been imaged by SEM, TEM and optical microscopes, but
many questions about the internal layering of these microcomposites still remain.

The organized assemblies of the biological systems described above are
of recent interest for the insight they lend in developing processes to control the
size, morphology and cluster formation of irorganic compounds.1 The highly
ordered formation of nacre, the inner aragonite layers of mollusc shells, is of
particular interest due to the extremely high fracture resistance and toughness
properties, which are comparable at ambient temperatures to high technology
structured ceramics.> * These properties are a result of a “brickwork” formed by
the inorganic platelets of the aragonite and an organic matrix ‘mortar”.* %57
The organic matrix is considered to be the causal agent for many of the
characteristic features in biomineralization. The effects that have been attributed
to the organic matrix include crystal nucleation, size and crystal morphology,
and crystal orientation.’

It has previously been suggested that the nucleation and growth of the
inorganic crystals within the organic layers may not be single crystal formations
but a mosaic crystallite structure, or microdomains.>*'® ' In nacre, in
particular, the aragonite lattice may incorporate organic molecules.'® We
believe that during this study it has been possible for us to image the crystallites,
or microdomains in the Red Abalone shell with the Atomic Force Microscope

(AFM).




Introduction

Biomineralization is the process by which organisms convert ions in
solution into solid materials.® During the process of forming minerals the
organisms create microenvironments that affect the nucleation, growth,
mineralogy and morphology of the inorganic phase.

The organized assemblies of biological systems lend insight into
developing processes to mimic the control of the organisms when synthesizing
inorganic compounds. Recent work has been accomplished in biologically
mimicked organized assemblies where the mimicking does not attempt to
duplicate biomembranes, but to recreate or imitate only its essential components
in an effort to develop solutions to practical problems.1 The biomembranes have
been somewhat successfully mimicked through the use of Langmuir-Blodgett
films, bi-layer lipid membranes, micelles, microemulsions and vesicles.'

The great interest in this area is derived from the superior properties of
the biological microstructures, and from the organism's ability to control the size,
shape and mineralogy of different structures. Several factors may contribute to
the desirable combination of properties present in the nacreous layers. These
might include the intertwined presence of both the organic and inorganic
components, the highly organized and intricate microarchitecture found in the
layers, and finally the scale (size) or fraction of each component (organic and
inorganic) present.4 The result yields a microcomposite material combining the
strength of the inorganic component with the elasticity of the organic
c:omponent.17 |

One organism can produce a range of organic-inorganic structures, such
as shell teeth, bone and cuticles. Many of these structures are formed from the

same mineralogies, but unlike the crystals found in the geological forms, the



biological inorganics adopt different morphologies and mineralogies suited for
each particular scenario.

Biomineralization begins with an organic matrix, secreted as a substrate
by the membrane or organism. The matrix acts as an organized surface that
controls the mineralization. This can be thought of as the pre-organization of the
system.’7 During this stage the matrix proteins can favor the development of
certain isomorphs, and can also inhibit the growth of specific crystal faces.”
Some of these proteins are soluble, and may become covered by mineral, and
trapped in the growing crystal leading to intracrystalline matrix development.16
Eventually, this sequence would strongly influence the toughness and strength of
the mature crystal."

The next stage in the fabrication of biological minerals is templating. This
step involves the use of the pre-organization of the organic matrix for the
controlled nucleation and growth of the inorganic clusters from aqueous
solution.!”” The orientation of the crystal growth is controlled by interfacial
molecular recognition which assists in the construction of the nuclei. The
morphology of the crystal and direction of growth is governed by the direction in
which the energy of the growth is at a minimum.> "’

As many nuclei.centers develop within a microspace of the matrix, the
lattice of each nuclei become similarly oriented as the nuclei grow and become
crystallites. As the crystallite grow, they compress the organic matrix between
neighboring crystallites continuing to form the intracrystalline matrix. This
mosaic of crystallites, or microdomains, can be interpreted as a single crystal
surrounded by an intercrystalline matrix, because of their similar orientations and
properties.’

Finally, the inorganic crystal growth may also depend on inorganic
modifiers. Influences on this step include: 3

~the rate of supply of ions to the nucleating solution

~diffusion of ions to the growing crystal surface

~adsorption or integration of atoms into the crystal surface




~the effect of inhibitors that may be present

The molluscs mineralize over 26 structures other than the shell, and each
one of these structures is formed directly by a single layer of epithelial cells. In
order to accomplish this, the cells must be involved in both the movement of the
mineral ions to the deposition site, and also in the secretion of the organic matter
that will become the matrix for the deposited minerals.® The epithelial cells in the
mantle tissue alternately secrete the organic and inorganic components into the

extrapallial space, which is an internally closed cavity between the mantle and

shell.?

figure 1. (M. Sarikaya, 1995) A schematic dfawing of the growing edge of the abalone shell. C:
prismatic layer; N: nacreous layer; EPL: extrapallial space; pt: periostracum; c: cells; prtn:

proteins; m: muscle of the foot; t: tentacles; OP: organic matrix; AP: aragonite platelets.4

The calcium carbonate present in the molluscan shell is derived from

calcium and bicarbonate ions in the extrapaillial fluid according to the reaction’
Ca* + HCO; — CaCO; + H’
Inside the extrapallial space, the concentrations of calcium and carbonate

ion are raised to levels exceeding the solubility product causing precipitation and

crystal formation to occur. The nucleation and growth of the crystals are




controlled by pH differentials across the membrane.® The morphology and size

of the nucleating crystals may be affected by both inhibiting ions that are also

10,11,12 13,14,15

present in the fluid and by the organic matrix enveloping them.
The organic matrix may be separated into two fractions, the soluble and
insoluble components. The principal compounds of the soluble fraction are
glycoproteins, polypeptides and polysacc:h::1rides.2'3 The insoluble component
contains DOPA and has higher concentrations of phenylalanine, tyrosine,
glycine, and alanine.> "

There are two phases of CaCQj; present in the mollusc, these are the
calcite and aragonite phases. The nacreous layers in the interior of the mollusc
shells are composed of aragonite. Aragonite is a polymorphic phase of CaCO;
that in this case adopts a hexagonal platelike morphology. The platelets range

418 and are

from about 1um to 5um, but sometimes up to 10 um across
approximately 0.5 um in thickness. The platelets in nacre are typically arranged
in either columns (abalone or nautilus), or in sheets (pinctada). The stacking
sequences of the platelets are not random, but are layered together with the

organic matrix to form the microarchitecture described previously.4

gOPAL &

Figure 2a. (Wise,1970) Pinctada radiata crystals arranged in sheets. SEM image.3
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figure 2b. (Wise, 1970) Nacreous shell of the gastropod Turbo castanea showing stacked
formations. SEM image.3

The calcite phase is columnar, rather than platelike, and appears on the
exterior portion of the shell. Both the calcite and aragonite phases are
composed of oriented crystal lamellae, each surrounded by an intercrystalline
organic matrix. The organic matrix not only surrounds each crystal, but

intracrystalline matrices also penetrate and envelop the smaller crystallites within

them, as discussed pre\’/iously.16

figure 3. (Watabe, 1965) Schematics of crystal platelets showing intracrystalline organic matrix
and crystallites.




Kitano and Hood (1962) have shown that aragonite is the preferred phase
to nucleate from supersaturated seawater, mainly due to the presence of Mg”,
which inhibits the formation of calcite.'® The Mg and other inhibiting ions, such
as Sr' present in seawater may also affect the morphology and mineralogy of
the nucleating crystals. '

In this study we have been primarily concerned with the observation in
mollusc shells of the inorganic aragonite phase, and the imaging of its

boundaries and microdomains within the organic matrix.




Scanning Probe Microscopy

The Atomic Force Microscope (AFM) and the Scanning Tunneling Microscope
(STM) are part of the new family of emerging Scanning Probe Microscopes (SPM) that
are capable of resolving surfaces down to the atomic level.” Besides atomic and
molecular shapes, these new devices can also map electrical, magnetic and
mechanical properties and tempreature variations.”®

The first SPM was the scanning tunneling microscope (STM), developed by G.
Binnig and H. Rohrer during 1981 at the IBM Zurich research laboratories.**

The STM is based on the tunneling capabilities of electrons. To scan a surface using
the STM, an extremely sharp tip (of tungsten or platinum-iridium) is brought close
enough to the sample surface so that the electron clouds of each are just touching.
Since the probability of finding an electron beyond the surface decreases exponentially
with distance from the surface, this distance must be very small. A voltage is applied
between the tip and the sample, causing electrons to flow, or tunnel through the
electron clouds. The distance between the tip and sample is very sensitive, and
produces precise measurements by rastering the tip across the surface moving up and
down with the topography.24

The tip can move In three dimensions with an x, y, z, piezoelectric translator. The
distance betwen the sample and the surface is controlled by a voltage applied to the z
piezo element. The voltage is determined by a feedback circuit that measures and
controls the small current caused by the movement of the tunneling electrons and the
low bias voltage applied to the tip.25 The lateral resolution of the surface is limited by
the sharpness of the tip®®. Ideally, the tip would be sharp enough to have only a single
atom sitting securely at the end. Usually, this atom comes from the sample itself, being
dislodged by high electric fields that are caused by the applied voltage.*® If the
sharpness of the tip, the precision of the controls, and the fineness of the raster scan
are all adequate, the STM can resolve images as small as 0.2 nm.?® Because of its

dependance on current, it is necessary for the sample to exhibit some conductive




properties, or in the case of biological specimens, be immersed in a liquid cell in order
to image with the STM. This presents some limitations as even many metals become
oxidized.”’

The AFM. which does not need a conductive sample was introduced by C.
Quate, of Stanford University and C. Gerber, from the IBM Zurich laboratory in 1985.%°
The AFM records the interatomic forces between the apex of a cantilevered tip (a shard
of diamond mounted at the end of a silicon nitride tip) and the atoms in the surface of a
sample.25 The AFM can be operated in two modes; either in contact mode where the
AFM senses the repulsive forces (generated by the overlap of the electron cloud at the
tip with the electron cloud at the sample surface atoms) between the tip and the sample
by actually touching the sample, or in non-contact mode, where the tip senses the
attractive forces between the tip and sample and the feedback system keeps the tip
from touching and damaging the sample. This second method comes at the cost of
decreased lateral resolution.”> % The small repulsive forces (10°-10° N) are recorded
by measuring the minute deflections of the cantilever tip. The deflection of the spring in
the in the force sensor can be measured with electron tunneling, an interferometer or
by the deflection of a laser beam reflected off a mirror and received by a photodiode.
The electric signal must vary rapidly with deflection, and the feedback mechanism
responds to the changes in the beam’s path by activating the piezoelectric motor. The
piezo control adjusts the distance of the tip from the sample surface to keep the
deflection of the cantilever constant. The deflections of the cantilever are recorded by a
computer which translates them into a display of the sample’s topography.* *°

SPM has become a much needed alternate to SEM and TEM, since it offers
non-destructive methods of imaging, although work is still being accomplished in
interpretation of the images. Work in this area is necessary to overcome or realize
artifacts of convolutions present in the displays.

Technological applications of SPMs extended largely into the electronics and
compact disk industries where methods for quality checks on the micron or nanometric
scale on a regular basis are necessary. There is also great interest in SPM in the

medical and biological fields for imaging biological structures and molecules. This




study is a good example of the difference in information obtained from the AFM in

comparison to that previously obtained by the SEM or TEM.

Though much work has been accomplished in this area, only a few publications are o
available using SPM techniques. Recent work done by S. Manne et al. ® have
explained what we believe to be microdomains as surface asperities. The asperities
described were imaged on the bivalve (Atrina sp.), but were not mentioned in the @
imaging of the gastropod (Haliotis rufescens).
o
Experimental
1. Sample Preparation ®
The Red Abalone, Pinctada (pearl oyster), and Nautilus samples were each
cleaved with a razor blade to produce a fresh surface. The cleaved samples were
mounted on standard AFM sample plates using double sided tape. Before imaging, ®
each specimen was cleaned using “Dust Off".
The geological aragonite (orthorhombic lattice structure) had been previously
prepared, and a flat native (001) surface was exposes for imaging. The geological
calcite (rhombohedral lattice structure) was cleaved and a fresh (001) surface was ot
exposed for imaging. These samples were mounted using the same method as
described for the biological specimens.
[
2. Imaging
A commercial AFM (Nanoscope E from Digital Instruments, Santa Barbara, CA)
was used for imaging. We operated in contact mode, with silicon nitride cantilever tips, ®
replaced after each session for optimal results. The AFM imaged in constant height
mode.
o
10
®




Results

Some difficulty was encountered in imaging both the biological and geological
specimens due to the sample roughness and natural curvature of the shells. The
roughness values and grain sizes were calculated using the software that accompanies
the Nanoscope Il. The diameters were also calculated through manual use of the
software. Images and sectional analysis sheets for each specimen may be found in the
appendix.

The images below in figure 5. are several examples of the geological aragonite
samples. As the scan size is decreased, the size of the crystals are found to be

approzimately 150-300 nm in diameter.

Geological Aragonite

geoar.002

geoar.001

figure 5. Geological Aragonite. Clockwise from the upper left, scan sizes range from 400 nm, 2 um,10
um, 10 pm.
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Geological calcite was imaged as seen below in figure 6. P

Gealogical Calcite

®
‘geocal . 001 07110747.001
@
®
®
®
figure 6. Geological Calcite. Scan sizes are 200 nm. and 5 pm.
The Red Abalone (Haliotis rufescens) was imaged with the J head, in order to PY
obtain larger scan sizes. The Red Abalone contained a network of platelets
approximately 5-7 um across. As smaller scan sizes were used for imaging the
platelets, crystallites, or microdomains began to appear, as seen in the latter images in >
figure 7.
o
12
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Red Abhalone

i nacre2m.013 nacre3m
o o
|

°

nacre3m nacre2m. 006

L

|

|
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®

e

figure 7. Red Abalone. Clockwise from upper left, the scan sizes are as follows; 15 um, 10um, Sum, and
2um.

The Black lipped Oyster (Pinctada margaritifera) was also imaged with the J

head. The oyster platelets were approximately 3-5 um in length. As the scan size
decreased, microdomains also began to become apparent in this sample, as imaged in
® figure 8. A second region was also imaged, as seen in figure 9. The organic matrix is

not present here as in the prior images.
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Pinctada

figure 8. Black Lipped Oyster. Clockwise from the upper left, 5pum, 3 um, 3 pm, 5 pmm
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Pintada

rink,004 . pinka.006

figure 9. Black Lipped Oyster. From left to right, 10 um and 7.5 pm.

The Nautilus (Nautilus pompilius) was the most difficult sample to cleave and to
image. Both the J and E heads were used for imaging. The nautilus crystals are

approximately 0.7 um in length. Images may be seen below in figure 10.
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Nautilus

naut2.005

figure 10. Nautilus. From lleft to right, 800 nm. and 5 um.

The values for platelet size, crystallite size and roughness values may be

compared in Table 1. below.

Table 1. Data for Comparison of Nacre

specimen Platelet | Crystallite | Roughness (RMS) | Maximum height
.size size (nm) | for 5 um scan size | for 56 um scan size

geological aragonite | NA 150-300 6.01 nm 38.95 nm

geological calcite NA 100-125 5.088 nm 59.65 nm

Red Abalone 5-7 um 100-180 9.26 nm 489.3 nm

Oyster 3-5 um 150-375 97.4 nm 815.37 nm

Nautilus 0.7 um N/A 77.67 nm 1.17 um

Other AFM resuits and images, including roughness, sectional and grain size

analysis may be seen in the attached appendix.
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Optical microscope results were also obtained for the shell samples, and are

also presented in the appendix.

Discussion

It is believed that the imaging of the platelets in the 1-7 um range as seen in
prior studies was difficult to accomplish throughout our experiment partly due to
intracrystalline fracturing during cleaving. Although the J head was utilized in each
case, the several micron range was a large area to scan, especially since each of the
samples possessed a certain degree of curvature and the height deviated greatly in
many regions. The strong sensitivity of the AFM to surface roughness strengthens the
need for extremely level samples. The nautilus sample was the most uneven, this is
evident in the optical and maximum height calculations. It was not uncommon for
several imaging sessions to pass with few or no useful resuits. We were fortunate to
have found level areas after several attempts, this being accomplished through pure
trial and error. The correct combination of scan area size and z range values were
crucial in realizing that an informative image was present. Only experience and
patience can improve this element of the experimental work. Several times, while
imaging larger samples, the force calibratibn curve would exhibit jagged oscillations,
even though the scope mode was varying consistently. [t is unknown why this
occurred, and could possibly be connected with poor resolution in some of the images.

We were able to image both the platelets (0.7 to 7um) and crystallites (100-375
nm) present in the nacreous layers of the shells. The crystallites appear as the scan
size decreases in the images. Although Watabe (1965) discussed the presence of the
crystallites and the intracrystalline organic matrix separating them, very few publications
have followed even though much other related work has been accomplished in this
area. The platelets are treated in most literature as single crystals, with no mention of
the microdomains. Resolution of the crystallites may have been difficult using other

techniques such as SEM or TEM.
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Two recent studies (S.Manne, et al., 1994) and (R. Giles, et al., 1995) examined
similar shells and also obtained images through AFM. It is believed that they dismissed
the microdomains as surface asparities due to the scan size used to obtain the images.
If a sectional analysis is done on a 5-10 um scan, the resulting line graph has given
height deviations in the range of 20-50 nm. This size range must be treated skeptically,
since it is in the range of the tip image size. If the images are obtained at smaller scan
sizes (< 1 um) this size range does not appear. What is evident is that the platelets
are composed of smaller domains, which are not in the size range of possible tip
convolutions. These images are not overly uniform or directional in appearance, and
scale in size with a change in the image scale. The microdomains are in the same size
range as the crystals of the geological aragonite, which is not an unlikely result.

Also of interest in the figure 9 images of the Pinctada is the clearly visible matrix
between the larger platelets. Although the organic matrix regions are believed to
consist of layers of an amorphous material, they appear in these images as particles, in
the same size range as the crystallites.

In conclusion, it is apparent that the crystallites compose the nacreous platelets
in each of the biological samples. These images should be of interest in the study of
the nucleation and growth of the crystals on the organic matrix. They should lead to
insight into the construction of the platelets, and therefore clues into thie high strength

and fracture toughness of these organic/inorganic microcomposites.
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Appendix - V: Manuscript in preparation

Prismatic-Nacreous Interface in Red Abalone Shell:

A Crystallographic and Morphological Investigation by TEM

D.W. Frech and M. Sarikaya
University of Washington

Department of Materials Sciences and Engineering

Abstract

The transition region between the prismatic and nacreous regions in red ablaone (Haliotis
rufescens) has been investigated by transmission electron microscopy imaging and electron diffraction.
The goal of this study was to obtain a better insight into the microstructural properties of the interface. The
interface region is where morphologically and mineralogically dissimilar phases of CaCO; meet, i.e., on
the outside of the shell, there exist columnar grains of calcite and on the inside, the layered platelets of
aragonite, constituting, respectively. prismatic and nacreous regions of the shell. Both these sections
contain about 2% organic matter mostly separating the individual crystallites. The study focused on the
transition from calcite to aragonite. involving local morphological and crystallographic features found in
this region. The character of the aragonite crystallites found near the interface change dramatically until
nacre of ideal and consistent microarchitecture is found within 10-20 pm of the interface. The
microstructure which develops in the post-interface transition region features zones of granular disordered
aragonite, widely-spaced layers of aragonite grains with columnar morphology, early nacre (layered
aragonite crystals) with insonsistent, though somewhat platelike shape, and gradual development of
consistent nacreous microstructure of parallel-sided aragonite rliatelets approximately 0.5 pm thick
separated by parallel organic layers. Evidence of the effects of both thin structural core of the organic
matrix, in limiting thickness of mineralized layers. and of the functional organic molecules (thought to
attach to the core layer), in directing mineralogy of the precipitating phase (calcite or aragonite) have been
found. It appears that a complete combination of both components of the organic matrix is required to
produce the highly consistent nacreous microstructure, though the process of templating still remains in

question.

Introduction

The shell of the organism red abalone (Haliotis rufescens), a well-studied example considered to
exemplify formation processes and features of biomineralized materials systems, is comprised of an outer
region, of thickness 0.5 mm to 3.0 mm' (in the shells of mature animals) consisting of fine calcite

crystallites, and an inner region known as mother-of peari (or, nacre) which is a highly organized




organic/inorganic microcomposite material. The microscopic scale structure of nacre and the processes of
its genesis have been studied extensively primarily due to the extraordinary mechanical properties it
exhibits and the unusual morphology and organization of its inorganic (aragonite crystal platelets) and
organic (protein and polysaccharide sheets, thickness ~50 nm)’. The exact processes which govern and
dictate the growth of highly specialized microarchitecture found in the nacreous section of abalone and
other shells are not completely explained at this time. Previous works® have asserted that a cooperative
interaction takes place between organic macromolecules deployed/secreted by the molluscan organism and
Ca®" and CO,” ions which form solid CaCO, (aragonite) crystallites of highly consistent morphology and
specific crystallographic orientation when nacre is formed from the solution near the shell surface. (The
structure of nacre consists of platelets approx. 0.5 pm in thickness and 5-10 pm in breadth, assembled with

sheets of organic material separating the individual platelets. A cross sectional view of this material

reveals a “brick and mortar” microarchitecture).

Recent experimental work" in growth of nacre atop artificial substrates inserted into the EPF in
live abalone indicates that shell formation in red abalone proceeds from crystallization of an initial layer of
oriented calcite crystals which is followed by production of nacre, containing small (0.5 pm thick, 5-10 um
in breadth) crystalline platelets of aragonite separated by thin sheets of organic matter The transition from
the calcitic to nacreous regions in abalone shell involves selective crystallization of one distinct
polymorphic variation of CaCOs: calcite (crystal class rhombohedral, space group 167) or aragonite
(crystal class orthorhombic, space group 62)°. Because of the relatively short-range transition between
these crystal types, the interface and difference in crystalline structure present are thought to demonstrate

the selectivity and control exerted by the organic components in the process of biomineral growth.

In this study, the microstructure and crystallography of the interface region have been examined
using transmission electron microscopy and electron diffraction. The conclusions and findings from this
study suggest that the release of organic macromolecules and their control over the formation of the highly
organized nacreous structure does not reach its full extent instantaneously at a precise line of interface.
Within the aragonite zone immediately adjacent to calcite at the interface, there is some irregularity and
disorder not found in nacre from the central regions within the shell’s inner layer. The disordered features
at the interface are occasionally interrupted by zones of nearly ideal nacre immediately adjacent to calcite
at the interface, but for the majority of the interface, examination revealed that nearby aragonite it is not

structured with the same consistency as that from the central nacre. Features found in the near-interface

aragonite zones are listed below:

(a) A region of aragonite with small, unoriented crystallites is located between the calcitic crystal region

and the first platelets formed.




(b) There is no recognized crystallographic correlation between calcite and neighboring aragonite crystal at
the interface.

(c) For the first platelets of nacre which form after the transition from calcite to aragonite (usually,
depositied after the thin region of unoriented, polycrystalline aragonite), their geometry is not consistent.
(d) Calcite and aragonite are found intermixed and intercalated at the interface.

(e) Sheets of protein (organic matter) have been found deposited within calcite crystalline regions near the
interface, in parallel layers as they are found in “regular” nacre.

(f) In initial layers of aragonite found near the interface, though edges of platelets are parallel, the actual

blocks between the organic sheets do not contain single-crystalline domains.

These results suggest that the switching from calcitic columnar crystalline texture to aragonite
single-crystalline platelets separated by thin organic layers in an abrupt step may be an idealization of a
transition which involves a more gradual progression and several distinct types of formation. [t appears

that the nucleation and growth of platelets. in stacked layers, of aragonite:

i) requires deposition of an organic sheet with nucleating sites in localized positions.

ii) becomes gradually defined over a distance 5-10 pum, sometimes more, into the nacreous

region.

Furthermore, the shape of the particles of aragonite forming nacre do not seem to immediately
result from habit modification previously hypothesized6 to be due to organic molecules interacting with
specific surfaces of growing crystallites. Directly across from single-crystalline calcite regions, well-
formed single-crystal blocks of aragonite do not appear. Rather, some irregular, polycrstalline aragonite
crystalline layers, eventually followed by single crystal calcite blocks in regions where organization of
organic layers is more consistent. is typical. In fact, since nucleation (rather than growth) is not regulated
in this region, then the aragonite crystallites have morphology, size, and crystallography features that are

irregular (we have the aragonite growth in this region “frustrated biomineralization™.

Experimental Procedure

A. Sample Preparation

The principal requirement for producing a sampie suitable for examination by transmission
electron microscopy is making a specimen of the material which is thin enough to permit transmission of

electrons accelerated in a collimated beam by the instrument (TEM). To produce such samples, we started




with bulk samples of mollusc shell (from either abalone, pinctada, or nautilus). Because of the presence of

organic matrix and water in this material, both the preparation and TEM investigation require extreme care

to prevent radiation damage.

[nitial Thinning

Sections (rectangular beams or pieces of size and shape that can be handled by the wafering saw)
were cut from the shells using a water-cooled, hi-speed diamond saw, first, to produce manageable pieces
for further sectioning. The upper layer of these beamlike sections was calcite (the shell outer surface), and
the lower layer was nacre. Thin (approx. .025 in. thick) wafers were cut from these sections using a low-
speed, water-cooled saw, equipped with a diamond-coated wafering blade. The wafers had the
approximate aspect ratio of a sheet of plywood. in which the sheet was composed of a flat calcitic zone and
an adjacent flat aragonitic zone. Pieces from these thin sections were thinned further by sanding them,
starting with 600-grit SiC abrasive paper, and finishing with 1200-grit abrasive paper. Mechanical
thinning in this fashion was carried out until the sample was as thin as it could be made while still capable
of withstanding the strain of the abrasive process without breaking into smaller fragments. Refinements on
this sample perparation process included bonding the thin wafer to glass slides with cyano-acrylate
adhesive (soluble, later, in acetone, to remove the thinned piece), and polishing and thinning the piece
using abrasive SiC slurry. Typical final sanded thickness was .002 or .001 in. (or less). Following

thinning, with an oval hole in its center, using silver paint.

Ion Beam Milling and Final Thinning

The final step in thinning the specimen was jon-beam milling. Small sections were cut from the
wafer-thin sample using a razor blade. and were mounted onto a 3 mm Cu disk (which would later serve as
the specimen holder in the TEM sample stage) which had an oval hole in its center. The sample was
bonded to the edge of the oval hole in the copper disk with silver paint, so that a portion of the sample
projected over the edge of the oval hole. The line of interface in these small sections was centered over the
oval hole so that it would be most effectively thinned in subsequent ion-beam milling. The sample,
mounted on the copper disk in this manner, was then placed into a Gatan jon-beam miller. Focused ion
beams of argon atoms accelerated to 6 KV struck the sample surface at a glancing angle of between 10 and
20 degrees. Throughout the bombardment of the sample by the ion miller beam, the sample holder was

cooled to approximately 77 K by liquid nitrogen to prevent damage to the sample. Final preparation of the

sample for TEM involved application of carbon coating to the sample; this was performed in a carbon




evaporator. The thin layer of (conductive) carbon deposited on the sample surface prevented charge from

building up on an otherwise insulative specimen.
B. Electron Microscopy

All experimental TEM information was acquired using a Philips 430T transmission electron
microscope, operating at 200 KV. During the experiments, the sample was cooled using a liquid nitrogen
reservoir attached to the sample stage, reducing the sample temperature to approximately 77 K, to avoid
radiation damaging its mineral or organic phases.

Bright field imaging was used extensively for inspection and overview of areas of the sample. In
this mode, contrast is generated between regions of the sample which diffract more or less strongly. This
principle allows for recognition of different grains and of regions of different mineralogy and composition
(organic/inorganic phases). Most imaging was conducted at magnification levels between 10,000 and
60,000 X.

Electron diffraction (particularly selected area diffraction) was used to establish orientation
relationships between different regions within the interface, and to identify the crystalline phase (aragonite
or calcite) present. Crystal texture, orientation, and polycrystalline character of the biominerals can be

determined by analysis of the diffraction information gained through this approach.

Results and Discussion

From TEM examination of the interface region, several new unanticipated features have been
uncovered in early stages of aragonite mineralization and in the interrelationship between czlcite and
aragonite at the interface. The images of these features, crystallographic analysis, and interpretation are

provided for each (mentioned in the introduction) in the subsections following.
Initial Unoriented Aragonite Mineralization at the Edge of the Calcitic Crystal

Adjacent to the line separating aragonitic and calcitic zones, higher magnification images show
that the first aragonite to form occurs in an uneven layer from 0.2 pm to 5 um in thickness. Between this
polycrystalline layer and its neigboring single-crystalline calcite domains, the interface was not separated
by a distinct organic sheet. . However, a distinctly thick organic sheet is found between these zones and
underlying layers of aragonite which begin to assume more regular shape and which are interspersed with
organic layers between each mineral layer7. Images of such zones of “intermediate” mineralization are
shown Figure 1 (at end of text, all figures in Figures Section) in (3) TEM micrographs in taken from

different locations along the interface.
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Selected area electron diffraction (SAED) patterns acquired from these zones reveal that the
crystallites are in relatively random orientation, as evidenced by the broken-ring appearance of the

diffraction pattern. By comparison with simulated ring diffraction from aragonite and from calcite, it was

concluded that the mineral phase present in these zones is aragonite. This represents therefore the initial

deposition of aragonite immediately following the transition from calcite. Diffraction from these regions

and a simulated ring pattern is provided in Figure 2.

From examination of the T.R., and subsequently deposited layers of aragonite found below it, it is

apparent that a sheet of organic matrix is not necessary to initiate crystallization of aragonite and the
transition from calcitic mineralization, but that growth of layered aragonite, as found in nacre, must be

accompanied by periodic deposition of organic nucleators, and a distinctly thick organic layer that precedes

the growth of the first and subsequent aragonitic strata following intermediate mineralization zones in the

T.R.
At the cup-shaped nucleus of where growth of new aragonite crystals begins, the aragonite

crystallites formed are piatelike, but with a slightly upward-bulging curve in their center,following the

contours of the nucleating site. It is only after several successive layers that aragonite crystalline tablets

assume a flat morphology.
Lack of Crystal Correlation at the Interface

From diffraction gathered from near-interface crystals of aragonite and calcite, the possibility of a

near matching between atomic arrangements at the interface,or a coincidence between calcite and aragonite

has been practically eliminated. For most of the near-interface caicite, the crystals are relatively large and

of single domain and orientation. Diffraction from several areas of a region 5-10 pm in extent yields the

same pattern at consistent sample stage tilt. as shown in Figure 3; this indicates that this domain consists on

one large single crystal (Furthermore, there is a lack of grain boundaries, interruptions, and other features

in this region). However, away from the interface, we have found that the calcite crystallites have a

crystallographic correlation. At the same time across the line of interface, we are presented with mulitiple

small aragonitic crystallites of inconsistent orientation. In the more organized case, platelets, rather than

needle-like crystallites, also of nonuniform orientation, are found. In either of these cases, it would not be

possible to have the multiple crystals of aragonite in registry with a single crystal plane or characteristic

pattern of sites in the same caicite crystal: no coincident site lattice between calcite and aragonite, at the

interface, is demonstrated through all of the imaging and diffraction results.

Figure 4 illustrates the case of a domain of polycrystalline aragonite (its mineralogy determined

from a selected area diffraction pattern . also a ring pattern, not shown, acquired from this area) sharing an

interface with a larger single-crystalline domain of calcite. From a higher magnification image of the

aragonite polycrystalline zone, multiple crystallites, in slightly different crystalline orientation can be



recognized by their darker or lighter appearance, which is attributable to diffraction contrast. Figure 5
shows a zone of several platelets in random orientation all sharing a line of interface with a common single

calcite crystal grain.
Nonuniform Platelets Adjacent to Interface

A lack of consistent and rectangular shape to the platelets of nacre in close proximity to the calcitic zone is
typical of the initial aragonite formed after switching the mineralization from calcite to aragonite at the
interface. A TEM bright-field image of a region exhibiting disorder typical of the earliest layered aragonite
sections formed is provided in Figure 6. The thickness of platelets in these regions is not consistent nor is
the cross-sectional shape of the platelets rectangular. The platelets appear often polycrystalline rather than
single-crystalline, as they appear deeper in nacre. The organic sheets delimiting the top and bottom
surfaces of the platelets are not in parailel orientation. In short, the transition from calcite to aragonite is
not necessarily accompanied by genesis of flat, polygonal, interdigitating aragonite crystals of thickness
0.5 pm. For comparison, a TEM bright field image of a cross section of abalone nacre from the central
region of the inner nacreous layer is also provided in Figure 6.

Radical variation of aragonite layer thickness is also characteristic of the earliest formed
aragonite. The layers in some cases initially deposit with fairly consistent, submicron thickness, and
subsequent deposition becomes erratic with layers several microns thick occurring next. Within these near-
interface mineral layers, the aragonite is comprised of fine, needle-like grains oriented with long axes
oriented along the normal to the layers. The morphology of the crystallites in these early aragonite layers
resembles acicular calcite. Typically after some of this variation, the regular nacreous structure emerges in
layers deposited later, wherein layer thicknesé is approximately 0.5 pm.

Theories on the role and presence of interlamellar and intercrystalline organic matrix put forth by
Bevelander and Nakahara® support the findings in the early aragonitic layers and platelets. A thicker
matrix, providing separation between individual crystallites on the same layer as well as between layers,
appears to be required to generate single-crystalline blocks, while thin interlamellar sheets can produce
distinct layers, but without generating individual “pricks” of aragonite which are essential to the
microarchitecture of the microcomposite.

The relative thickness of the organic layers (thin in the regions of initial aragonite mineralization
where acicular aragonite crystallites are found within layers, but which are much thicker at the onset of
regions in which regular nacreous platelets form) supports the hypothesis that the organic matrix is a bi-
component system, in which the structural core is composed of sheets of protein featuring a periodic
higher-order structure and possibly p-sheet type conformation. Attached to this framework are active
acidic macromolecules (containing substantial protions of aspartic and glutamic acids) which directly

interact with ions to regulate growing crystals. Thinner bands of organic lamella could be interpreted to be




the structural core of the organic matrix, without attached active macromolecules. The mineralization
resulting from the presence of the structural core tamella only is poorly controlled (see images of needle-
like aragonite within layers). Thicker organic layers then consist of both core sheets and attached active

organic molecules, and their effect is to produce single-crystal, oriented blocks of aragonite and after a

short period of disorder, regular nacre.

Intercalation of Calcite in Aragonite

Near the initial line of calcite/aragonite transition, there appear regions where within layers of
aragonite, calcite crystals are deposited. Figure 8 gives a TEM bright-field view of a small calcite grain
surrounded by aragonite grains (the calcite zone is found within one layer of aragonite, between organic
sheets separating otherwise aragonitic crystal). Apparently, switching from one crystal type to another is
not immediate nor is it reversible at the initial interface. Calcite exists in contact with and surrounded by

the same proteins and organic matter which seem to promote formation of aragonite.

Sheets of Protein Interpenetrating Calcitic Crystal

In selected areas sheets of organic/protein material are found interspersed within calcite crystal, in
parallel, layered disposition as they are found within layers of aragonite crystal in nacre. These bands of
organic material appear to be finer than those found at the major, definite transition line at the interface,
below which layered aragonitic crystal typically is found. Figure 9 provides a bright-field image ofa
region of near-interface calcite which has such layers within it. By diffraction, the region was confirmed to
be comprised of calcite, as shown from the SAD pattern and simulated pattem from calcite zone axis [220-
4] shown in Figure 9. This diffraction pattern was acquired from the region directly between the organic
layers, marked by a circle in Figure 9. A higher magnification view, Figure 10, of the junction between
single-crystalline calcite containing these anomalous organic sheets and the neighboring domain shows that
these bands continue across this junction into a layered region containing thin bands of aragonite in
“formative” nacreous microstructure. The organic material found here is apparently not sufficiently

influential to direct and/or switch the crystallizing polymorph, by producing aragonite instead of calcite, at

every mineral surface which it contacts.
The presence of these organic sheets concurs with the findings of Mutvei’ who recognized earlier

the presence of such regularly spaced intracrystalline organic sheets within the calcitic region of shell from

H. rufescens, through analysis of polished and etched samples of shell by SEM. Though in Mutvei’s

findings the sheets were reported to be well defined, we have found that these sheets appear substantially

thinner than organic matter separating aragonite blocks in nacre. This may be interpreted in terms of the




distint intercrystalline and intertamellar matrix components previousty proposed by Bevelander and
Nakahara'®. In this view, an electron “lucent” inner sheet is surrounded by an electron dense outer layer in
the interlamellar matrix, and similar electron dense material, without a supporting sheet, separates platelets
between their edges on the same layer. We have found a thin,, relatively transparent layer, which can be
interpreted as only the interlamellar sheet, within the calcite. This conclusion is supported by Figure 10,
wherein the parallel sheets intercalated within calcite are seen to continue across a boundary into aragontie,
where these sheets separate layers of aragonite crystal. The aragonitic crystal region does not contain
single-crystal platelets (characteristic of nacre); there is an apparent lack of separation on the same layer by

the (absent) intercrystalline matrix.

Conclusions

The small aragonite crystals in the zones of “intermediate” mineralization in the transition zone
possess a random orientation. Thin band of separation between the single-crystal calcite overlying these
regions and the granular aragonite does not have the flat, layered appearance of the organic sheets. It is
possible that this mineralogy (aragonite) is created through the presence of active organic molecules

only,.without the structural framework of the organic sheets.

The morphology of the aragonite crystalllites in the transition zone region shows a progressive
transformation toward the flat, platelet-like morphology over a range of several to tens of microns as one
examines regions which lie away from the interface. From these observations, the first organic sheets
released by the organism do not offer total control of the characteristic shape of near-interface aragonite
particles. Along a small proportion of the interface line, one can see immediate formation of “regular”
nacre, composed of single-crystalline platelets of aragonite of consistent thickness, immediately following
the line of calcite/aragonite transition. However, typically there exists a short-range region of disordered
aragonite, featuring occasionally a granular zone of aragonite mineralization followed by a thick band of
protein and platelets of inconsistent morphology and strata of nonuniform thickness. Layer thicknesses in
the near-interface nacre do not appear to be restricted as strictly as in the central-zone nacre. It appears that
the separation of the subsequent layering of initial aragonite is attributable to deposition of new organic
sheets, not due to the modified shape of aragonite crystal under organic influence, which has been thought

in past to be flat and hexagonal or poiygonal.

While the role of the organic sheets from the prior observations does not seem to include total
control over particle shape, size, and disposition, deposition of organic sheet does seem to be necessary in
order to promote the growth of aragonite in layers as it is found in nacre. Other components of the organic

matrix appear to be capable of promoting switching from calcitic to aragonitic mineralogy, as is seen in




o

“transition” regions and their mineralization (there is no intervening sheet between these regions and the

neighboring calcite crystallites), but these organic constituents are not capable of producing layers.

A templating mechanism, performed by the organic layers and resulting in the “pseudo-epitaxial”

growth of mineral in contact with these lavers, has not been elucidated in this investigation A more general

conclusion on the control/mechanism of formation of the nacreous platelets that emerges from the evidence

of this study:

i) Platelet shape, or at least the thickness of the platelets, is controlled by the separation of the

organic layers.
ii) Some control over switching of crystallizing polymorphic form of CaCO; is avaliable without

deployment of organic sheets. This conculsion agrees with the results of Belcher et al. (1996)"" in which

organic material (selectively extracted soluble polyanionic proteins) removed from the nacreous aragonite

in red abalone shell was found capable of causing polymorphic calcite-aragonite switching when deployed

in in vitro crystal growth experiments.
iii) Probably, some single-crystalline blocks of aragonite grow in preformed organic containment

structures (where very quiescent conditions exist) which begin to develop after the initial transition zone is

extablished. The interlamellar sheets are seen in all aragonite formed after the calcite/aragonite transition

except in the initial transition zone (granular) mineralization. However, the earliest aragonite layers do not

consist of single-crystal stacked tablets, rather, acicular aragonite crystals of dimensions by

compose the layers, which are hence polycrystalline. When later “regular” nacre develops, single blocks of

aragonite are separated along the same laver by organic matter. This suggests that compartments of
organic matter may preexist before mineralization of aragonite or these compartments may form when

aragonite displaces organic matter found between jamella as growing tablet-like crystals spread and fill the

space between interlameliar sheets.

iv) No general conclusion on what feature is responsible for consistent orientation of the platelets

of aragonite, within regular nacre. along the [001] direction. Templating by well-organized organic sheets,

set up as a pre-existing scatfolding within which crystalline particle deposit, is still possible.
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The most prominent ultrastructural characteristic of nacre (mother-of-pearl) features sub-
micrometre thick layers of aragonitic platelets (CaCO5) separated by 10 nm thick
macromolecular organic layers.! Organic material extracted from nacre, when added to
artificial seawater supersaturated with carbonate, organizes the formation of layers in ooid-
like spherical particles. Electron diffraction experiments indicate organizational alteration of
the mineral phase. Structural and compositional similarities between layered particles and
nacre are sufficient to suggest that similar processes could explain the early evolution of the

molluscan shell. The ability to generate layered structures should form the basis for the

synthesis of useful engineering materials.

Biomineralized structures have recently attracted the interest of materials scientists because
they represent examples of changes in or control of mechanical and physical properties
imposed by introduction of relatively small amounts of biopolymers.2'4 In nacre, proteins
and polysaccharides constitute 0.1 - 5 wt % of the material with the remainder being calcium
carbonate.’ The significance of nacre as a structural material stems from its excellent
mechanical properties - comparable to or better than some structural ceramics.6.7

Observations regarding particles found in rocks and marine sediments8-12 (ooids) led us to

examine the effect of molluscan macromolecular extracts on mineralization in vitro.

Soluble organic extracts were prepared from shells of red abalone, Haliotis rufescens,
nautilus, Nautilus sp.. and Atlantic razor clam, Siliqgua costata. Nacre was mechanically
separated from other shell structures, powdered, and demineralized in 5% NaAcetate pH 3.0
under vacuum. Soluble material was diafiltered to near dryness with an Amicon YM10
membrane, washed 3X with NaAcetate pH 3.0, 2X with 10 mM TrisCl pH 8.0, resuspended
in 10 mM Tris pH 8.0 and passed through a 0.2 pm filter. Serial 2-fold dilutions of extract

ranging from 50 pg/mi protein to 0.3 wg/ml were prepared in 5 mli filter sterilized artificial
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seawater in 18 x 150 mm borosilicate tubes. Addition of 200 ul of 0.1 M Na,CO;

supersaturated the system with CaCOs.

A limited number of potential calcium-binding proteins were seen after electrophoretic
analysis of organic extracts (Fig. 1). The proteins from different molluscan classes were
not obviously related, being rather small in abalone extract and larger in nautilus and razor
clam. The extracted protein represents only a small portion (about 0.5%) of the total shell

protein.

Particles or thin sections of particles formed from molluscan extract, but not controls,
exhibited concentric layers of refractive index change (Fig. 2a). Within 4 days at ambient
temperature, several hundred spherulitic particles grew on the sides of control tubes. As the
concentration of molluscan shell extract was increased, both the number of particles and the
growth rate decreased. At protein concentrations below that at which mineralization was
inhibited, a few large (~500 um) hemispherical particles were observed after about two
weeks (Fig. 2b). The effective concentration range between particles equal in size to control
particles and inhibition of growth is small, 0.5 - 10 pg/ml protein. Inclusion of non-
molluscan protein (bovine serum albumin), amino acids, or other small organic molecules in
mineralization experiments did not give significant growth inhibition or layered particle

formation .

The particles we have studied do not yet represent complete reconstitutions of nacre. In both
control (Fig. 2¢) and layered particles, pressure from a sharp blade caused predominantly
radial fracture; nacre is more fracture resistant. In layered particles, fracture sometimes
occurred along the concentric layers (Fig. 2a). Etching of fracture faces of layered particles

in the presence of protein fixatives revealed ridges protruding from the bulk surface separated
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by 1.2 - 9 um (Figs. 2b and d). In the absence of protein fixatives, the surface etched
evenly. Prominent extensions of aragonitic needles from the surface of control particles (Fig.
2¢), were largely absent on particles from molluscan extracts. A chromogenic amino-group
reagent was incorporated into concentric layers when attached to abalone protein (Fig. 2e).
In the transmission electron microscope, layers of electron transparency were observed
corresponding to the layers visible in the light and scanning electron microscopes (Fig. 2f).
The microstructure consists of small elongated crystals extending into or through layers.

Layers appear to represent a region of more concentrated protein rather than a strictly separate

structure.

Transmission electron diffraction patterns recorded from ultramicrotomed (but not strained)
particles from abalone extract and from control indicate that the CaCO3 particles are aragonite
(orthorhombic) in both cases (Fig. 3). In the abalone extract sample, fine particles are
organized radially and slightly elongated with a preferred crystallographic texture not
observed in the control. Texturing and elongation indicate a significant degree of control of

particle growth by nacreous organic extract.

Striking similarities exist between ooids! .12 (spherical particles with lamellar structure found
in rocks and sediments) and nacreous structures. The amino acid composition of shell
proteins including abalone3:13:14 and nautilus!5 tends to be rich in aspartic acid, with
proposed involvement in calcium binding.16-19 Organic matter comprises 0.1 weight % of
natural Bahamaian ooids, 30% of this was aspartic acid-rich protein.? From the amino acid
composition data, it was suggested that similar processes applied to ooid formation and
carbonate biomineralization.? Nacre and ooids share similarities which do not apply to other
biomineralized structures. Both are composed of layers of aragonite separated by thin organic

layers, with the aragonite c axis perpendicular to the major organic layer,7:20.21 and aligned
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in the growth direction. Humic acid was found to organize artificial radial carbonate ooid
formation from artificial seawater (these studies, data not shown)8.10. Carboxylation of

aspartates eliminated ooid formation.22

The nacreous structure has been a remarkably successful evolutionary design. Nacre is
found in members of the Monoplacophora, Gastropoda, Pelecypoda, and Cephalopoda.23
At the ultrastructural level, relatively small changes are observed between groups which
diverged about 500 MYr bp. In current forms, macromolecular components appear to self-
assemble and form layers! or compartments?4 which are subsequently filled with growing
aragonite tablets.!6-18.24.25  Using an analogy derived from metallurgy, spontaneous
formation of calcium carbonate in a mucilaginous phase was proposed to explain molluscan
shell evolution.23 Planar layered aragonite similar to the particles formed in these studies
could have evolved into the nacreous structure as shown in Fig. 4. The radial aragonitic
crystals with crystallographic texture of control particles could be relevant to prismatic
ultrastructural evolution. This speculative model explains the presence of two carbonate
structures in molluscan shells based on experimentally observed phenomena. Examination of
the ultrastucture of early shells is precluded by diagenetic alteration of specimens from this

epoch.

The evolution of nacre occurred about 550 Myr bp in Cambrian seas. ~ Although our
experiments used artificial seawater of modern formulation, the sequence of minerals in
marine evaporites, ionic composition of halite inclusions and ratios of strontium and carbon
isotopes in marine limestones place constraints on oceanic inorganic composition and have
led to the conclusion that seawater composition has not changed drastically since the
Cambrian.26 Carbonate rocks deposited during the Cambrian are common. The molluscan

shell may have evolved in one of the abundant Cambrian shallow tropical seas similar to the




Bahama shoals where ooid formation occurs today.

Detailed understanding of nacre formation may allow for the design of new materials in
which polymers regulate the formation and properties of technological ceramic-based

materials to produce nanoscale-laminates with desirable properties.!"* Humic acid,

previously shown to produce layered carbonate structures,310. 22 is a substance which

largely defies characterization and which would be difficult to use technologically. The

individual proteins in our molluscan extracts, when fully characterized, could form the basis

for the reproducable synthesis of novel materials.
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FIGURE LEGENDS

Figure 1. SDS-polyacrylamide gel analysis of molluscan extracts. Electrophoresis was in
14% acrylamide gels stained with 1-ethyl-2-[3-(1-ethylnaptho [1,2 d] - thiazolin-2- ylidene)-
2-methylpropenyi]naptho[1,2d]- thiazolium bromide (Stains-all). Lane 1 - molecular
weight standards; bovine serum albumin (66,000), carbonic anhydrase (29,000) and trypsin
inhibitor (20,000). Lane 2 - organic extract from abalone. Lane 3 - extranct from nautilus.
Lane 4 - extract from razor clam. Lane 5 - abalone extract digested with trypsin before
electrophoresis. The bands in the standards lane were stained pink. All the major bands in

the molluscan extracts were stained blue. Blue staining has been associated with calcium

binding!3:27-

Figure 2. Micrographs of layered particles. (a) Light micrograph of a fractured slice of a
particle formed in razor clam extract. Note the fracture plane following layer. (b) Scanning
electron micrograph of etched particle from abalone extract (AB particle). The upper face
was fractured only. The right and left faces were etched to different extents. Fix/etching was
in 10% glutaraldehyde, 2.5% paraformaldehyde, pH 2.9. (c) SEM photo of control particle.
The spherulitic structure consists of radially oriented aragonite needles without layers. (d A
closer view of layers in an SEM image of etched AB particle. (e) Light micrograph of AB
particle formed when dabsylated material was added to mineralization solution. Incubation of
dialyzed extract in 0.1 M CO4 buffer, pH 8.9 at 70 oC with amino group-specific reagent 4-
dimethylaminoazobenzene-4-sulfonate (dabs) labeled the protein components of the extract.
The labelled material fractionated preferentially into particles in mineralization experiments
and was predominately. (f) Transmission electron micrograph of AB particle. Control and

molluscan extract particles stained black with Feigl's solution, consistent with aragonitic

structure.
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Figure 3. TEM images and diffraction patterns of AB and control particles. (a) and (b) are
TEM images of AB and control particles, respectively. In AB particles, grains are radially
elongated (aspect ratio: 3:1); in control, they are equiaxed. (c) and (d) are selected area
diffraction patterns from (a) and (b) , respectively being aragonite (orthorhombic, Pmnc,
a=4.94 A, b=7.94 A, and ¢=5.72 A). Crystallographic texturing (about 30°) in (a) is absent

in (b).

Figure 4. Proposed scheme for evolution of the molluscan shell. The proto-mollusc (A) had
a proteinaceous precursor to the periostracum of modern shells. At some time (B), the
organism gained the ability to produce sites for nucleation of carbonate deposition allowing
mineralization of aragonite needles similar to those of control particles. At a later stage ©,
acidic proteins in the more protected area under the shell resulted in formation of a layered
structure on top of the needles. At the shell margin, seawater currents reduced the
concentration of protein, thus needle formation continued in this region. In the ancestral
structure, the primary interaction was the physical association of organic and carbonate
materials. The initial stages of shell evolution would have been somewhat disorganized and
uncontrolled. Increased interactions between organic components facilitated control of
growth and elaboration of the shell and improved the mechanical properties. At a later stage,
interactions between organic components allowed self-assembly of the organic
macromolecules prior to mineral deposition. The long thin aragonitic needles of the
precursor to the prismatic region of the shell could be converted to prisms by increased
growth rates along the a and b crystal axes. In many species, the prismatic region was
converted to calcite at a later evolutionary stage. The layered portion became nacre as self-
assembly of organics into compartments preceded aragonite mineralization. At this point, the
mollusk had a strong shell deposited in a controlled manner (D) which provided armor far

superior to the original proteinaceous shell.
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